Recent PandaX-II Results on Dark Matter Search and PandaX-4T Upgrade Plan

Ning Zhou
Shanghai Jiao Tong University
On behalf of PandaX Collaboration
ICHÉP 2018, 2018-07-07
Outline

• WIMP direct detection
• PandaX experiment
• PandaX-II operation and results
• PandaX-4T upgrade plan
• Summary
Dark Matter

- Strong evidences for the existence of dark matter

DM search methods
 - Direct detection
 - Indirection detection
 - Collider search
PandaX Collaboration

- **Particle and Astrophysical Xenon Experiments**
 - Formed in 2009, ~50 people

 ![PandaX Collaboration](image)

- Shanghai Jiao Tong University
- Peking University
- Shandong University
- Nankai University
- Shanghai Institute of Applied Physics
- Yalong Hydropower Company
- University of Maryland
- University of Science & Technology of China
- China Institute of Atomic Energy
- Sun Yat-Sen University
- Lawrence Berkeley National Lab
- Alternative Energies & Atomic Energy Commission
- University of Zaragoza
- Suranaree University of Technology

Ning Zhou, ICHEP 2018
China Jinping Underground Laboratory

- China Jinping underground laboratory (CJPL)
 - Deepest (6800 m.w.e.)!
 - Horizontal access!
PandaX Experiment

- Dark matter direct detection through xenon
- **PandaX-I**: 2009-2014
- **PandaX-II**: 2014-2018
 - 60 cm x 60 cm dual-phase xenon TPC
 - 580 kg LXe in sensitive volume
PandaX-II Run Status

- Run9 = 79.6 days, exposure: 26.2 ton-day
- Run10 = 77.1 days, exposure: 27.9 ton-day

Mar. 9 – June 30, low background with 10-fold reduction of Kr (Run9, 79.6 days)
Nov. 2016 – Mar. 2017, 2nd distillation campaign and recommissioning
Jul. 2017-Now, a few months 220Rn/AmBe runs, followed by DM data taking, 3x stat of Run10

- Nov. 22 – Dec. 14, Physics commission (Run8, 19.1 days, stopped due to high Krypton background)

- Jul – Oct, ER calibration & tritium removal

- Apr.22 – July15, dark matter data taking (Run10, 77.1 days)
Highlights of PandaX-II Results

• 33 ton-day: spin independent search, PRL 117, 21303 (2016)
• 33 ton-day: spin dependent search, PRL 118, 071301 (2017)
• 27 ton-day: inelastic scattering search, PRD 96, 102007 (2017)
• 27 ton-day: axion and ALP search, PRL 119, 181806 (2017)
• 54 ton-day: spin independent search, PRL 119, 181302 (2017)

• new 54 ton-day: general EFT and spin-dependent search, arXiv:1807.01936
• new PandaX-4T sensitivity study, arXiv:1806.02229
Light Mediator DM-SM Interaction

- Heavy mediator \Rightarrow EFT contact interaction
 - Foundation of “main” SI/SD results in direct detection
- Light mediator: mediator m_ϕ is compared to or smaller than q
 - Different signal spectrum

\[
\frac{1}{m_\phi^2 + q^2} \approx \frac{1}{m_\phi^2} \\

m_\phi < q
g N

\text{Ning Zhou, ICHEP 2018}
New Constraints on DM-nucleon

- From 54-ton-day exposure data
- Constraints on DM-n cross section are significantly weakened for light mediator interaction

Ning Zhou, ICHEP 2018
Constraints on Self-Interacting DM

- Self-interacting DM model can have light mediator mixing with SM particles
 - Mixing parameter ε
 - Fine structure in dark sector α

Phys.Rept. 730 (2018) 1-57

Ning Zhou, ICHEP 2018
General EFT DM-SM Interaction

- 14 non-relativistic EFT operators constructed with four basic variables
 - Relative perpendicular velocity between the WIMP and the nucleon (\vec{v}^\perp)
 - Momentum transfer (\vec{q})
 - Spin of WIMP (\vec{S}_χ)
 - Spin of nucleon (\vec{S}_N)

- Considering all interactions through NNLO

 \[\mathcal{O}_1 = 1 \chi \chi N \]
 \[\mathcal{O}_3 = i \vec{S}_N \cdot \left(\frac{\vec{q}}{m_N} \times \vec{v}^\perp \right) \]
 \[\mathcal{O}_4 = \vec{S}_\chi \cdot \vec{S}_N \]
 \[\mathcal{O}_5 = i \vec{S}_\chi \cdot \left(\frac{\vec{q}}{m_N} \times \vec{v}^\perp \right) \]
 \[\mathcal{O}_9 = i \vec{S}_\chi \cdot \left(\vec{S}_N \times \frac{\vec{q}}{m_N} \right) \]
 \[\mathcal{O}_{10} = i \vec{S}_N \cdot \left(\frac{\vec{q}}{m_N} \right) \]
 \[\mathcal{O}_{11} = i \vec{S}_\chi \cdot \left(\frac{\vec{q}}{m_N} \right) \]
 \[\mathcal{O}_{12} = \vec{S}_\chi \cdot \left(\vec{S}_N \times \vec{v}^\perp \right) \]
 \[\mathcal{O}_{13} = i \left(\vec{S}_\chi \cdot \vec{v}^\perp \right) \left(\vec{S}_N \cdot \frac{\vec{q}}{m_N} \right) \]
 \[\mathcal{O}_{14} = i \left(\vec{S}_\chi \cdot \frac{\vec{q}}{m_N} \right) \left(\vec{S}_N \cdot \vec{v}^\perp \right) \]

 - Spin independent / Spin dependent: 2 EFT operators
 - SI: \mathcal{O}_1, SD: \mathcal{O}_4

Phys. Rev. C89, 065501 (2014)

Ning Zhou, ICHEP 2018
Relativistic EFT Operators

• 7 typical relativistic operators

\[\mathcal{L}_{\text{int}}^9 \equiv i \sigma^{\mu\nu} \frac{q_\nu}{m_M} \chi \bar{N} \gamma_\mu N \]
\[\rightarrow - \frac{\vec{q}^2}{2m_N m_M} \mathcal{O}_1 + \frac{2m_N}{m_M} \mathcal{O}_5 - \frac{2m_N}{m_M} \left(\frac{\vec{q}^2}{m_N^2} \mathcal{O}_4 - \mathcal{O}_6 \right) \]

\[\mathcal{L}_{\text{int}}^{17} \equiv i \sigma^{\mu\nu} \frac{q_\nu}{m_M} \chi \bar{N} \gamma_5 \gamma_\mu N \rightarrow \frac{2m_N}{m_M} \mathcal{O}_{11} \]

\[\mathcal{L}_{\text{int}}^{10} \equiv i \sigma^{\mu\nu} \frac{q_\nu}{m_M} \chi \bar{N} i \sigma_\mu \sigma_\alpha \frac{q_\alpha}{m_M} N \rightarrow 4 \left(\frac{\vec{q}^2}{m_N^2} \mathcal{O}_4 - \frac{m_N^2}{m_M^2} \mathcal{O}_6 \right) \]

• Dramatically different spectra
 – \(q \) and \(v \) dependence
 – Isospin scalar vs isospin vector

Ning Zhou, ICHEP 2018
Constraints on EFT Couplings

- 54-ton-day exposure data
- Signal window selection same as SI
 - To be further optimized for various EFT in the future
- Constraints strongly depending on the operator/isospin

Ning Zhou, ICHEP 2018
Constraints on Spin-Dependent Interaction

- O_4 SD EFT operator
 - Full basis shell-model GCN5082

- For proton-only coupling in Xe nucleus
 - O_4 SD EFT interaction largely suppressed

\[
O_4 = \vec{S}_X \cdot \vec{S}_N
\]

\[
\sigma_{p,n}^{SD}(v) = \left(\frac{c_4}{m_V^2} \right)^2 \frac{\mu_{p,n}^2}{\pi} J_X(J_X + 1) \frac{1}{4}
\]
PandaX – in Future

- PandaX-4T for DM search
- PandaX-III for 0vbb search

PandaX-I: 120 kg DM experiment 2009-2014

PandaX-II: 500 kg DM experiment 2014-2018

PandaX-III: 200 kg to 1 ton HP gas 136Xe 0vDBD experiment Future

PandaX-xT: multi-ton (~4-T) DM experiment Future

CJPL-I

CJPL-II

Ning Zhou, ICHEP 2018
PandaX-4T Large Scale TPC

- Drift region: $\Phi \sim 1.2\text{m}$, $H \sim 1.2\text{m}$
 - Xenon in sensitive region $\sim 4\text{ ton}$, drift field 400 V/cm
- Design goal:
 - High signal collection efficiency
 - Uniform E field in a large volume
 - Veto facility

Ning Zhou, ICHEP 2018
New Experiment Hall at CJPL-II

- B2 Hall
- 14m(H) x 14m(W) x 65m(L)
- Water Shielding
 - 5000 Ton pure water
 - U/Th < 10^{-14} g/g
Current Status and Schedule

• R&D work-in-progress
• 2019-2020: assembly and commissioning
PandaX-4T Background Simulation

- Simulate the ER and NR events
 - **Detector materials**: inner/outer vessels, flanges, copper plates, electrodes, PTFE materials, PMTs etc
 - **Radioactivity in xenon**: 85Kr, 222Rn, 136Xe
 - **Neutrino**

- **Background in signal region**
 - Total ER background: 0.05 mDRU
 - Total NR background: 1 event / ton / year

Table 4
Final background budget within the WIMP search window.

<table>
<thead>
<tr>
<th>Sources</th>
<th>ER in mDRU</th>
<th>NR in mDRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials</td>
<td>0.0210 ± 0.0042</td>
<td>$2.0 \pm 0.3 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>222Rn</td>
<td>0.0114 ± 0.0012</td>
<td>-</td>
</tr>
<tr>
<td>85Kr</td>
<td>0.0053 ± 0.0011</td>
<td>-</td>
</tr>
<tr>
<td>136Xe</td>
<td>0.0023 ± 0.0003</td>
<td>-</td>
</tr>
<tr>
<td>Neutrino</td>
<td>0.0090 ± 0.0002</td>
<td>$0.8 \pm 0.4 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>Sum</td>
<td>0.049 ± 0.005</td>
<td>$2.8 \pm 0.5 \cdot 10^{-4}$</td>
</tr>
</tbody>
</table>

2-year yield (evts) | 1001.6 ± 102.2 | 5.7 ± 1.0
after selection (evts) | 2.5 ± 0.3 | 2.3 ± 0.4

Ning Zhou, ICHEP 2018
PandaX-4T Expected Sensitivity

- With two-year exposure, x10 improvement on sensitivity could be achieved.
- SI DM-nucleon sensitivity: 10^{-47}cm^2
- SD DM-neutron: 10^{-42}cm^2

Ning Zhou, ICHEP 2018
PandaX-III: in preparation

Looking for ^{136}Xe $0\nu\beta\beta$ decay

Lepton number violation

200-kg High pressure Xe detector

Prototype detector in Lab
Summary and Outlook

• **PandaX** experiment with 580kg Xenon has reached the world frontier of dark matter direct detection.
 – PandaX-II continues data-taking smoothly.
 – Recently, light mediator and EFT results are obtained
 – More results are expected.

• The future PandaX-4T experiment R&D is work-in-progress.
 – Expected sensitivity to SI interaction could reach 10^{-47} cm2
 – Detector assembly and commissioning is scheduled in 2019-2020

• **PandaX-III** $0\nu\beta\beta$ search detector is in preparation.

• **Thank you!**
Backup

•
Constraints on Spin-Dependent Interaction

- O_4 SD EFT operator $\mathcal{O}_4 = \vec{S}_x \cdot \vec{S}_N$
 - Full basis shell-model GCN5082
- For proton-only coupling in Xe nucleus
 - O_4 SD EFT interaction largely suppressed
 \[\sigma_{p,n}^{SD}(\nu) = \left(\frac{c_4}{m_W^2} \right)^2 \frac{\mu_{p,n}}{\pi} \frac{J_X(J_X+1)}{4} \]
- “Standard” SD calculation:
 - chiral EFT
 - $O_4 + O_6 +$ two nucleon pion-exchange

Ning Zhou, ICHEP 2018