Higgs physics at CLIC

Matthias Weber (CERN)
on behalf of the CLIC detector and physics (CLICdp) collaboration
Compact Linear Collider

Proposed e^+e^- linear collider

- High acceleration gradient 100 MV/m
- Two beam acceleration scheme
- Staged construction up to 3 TeV
 - High precision physics
 - Higgs, top, BSM

<table>
<thead>
<tr>
<th>Stage</th>
<th>\sqrt{s} (GeV)</th>
<th>\mathcal{L}_{int} (fb$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>380</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>3</td>
<td>3000</td>
<td>3000</td>
</tr>
</tbody>
</table>

Slightly different energies assumed in physics performance studies for first two stages 380 \rightarrow 350 GeV, 1.5 TeV \rightarrow 1.4 TeV
Higgs bosons in e^+e^- collisions

<table>
<thead>
<tr>
<th>Energy stage</th>
<th># Higgs produced</th>
</tr>
</thead>
<tbody>
<tr>
<td>350 GeV</td>
<td>1000000</td>
</tr>
<tr>
<td>1.4 TeV</td>
<td>430000</td>
</tr>
<tr>
<td>3 TeV</td>
<td>1400000</td>
</tr>
</tbody>
</table>

Numbers for unpolarised beams

Polarised beams can enhance production modes significantly

<table>
<thead>
<tr>
<th>Polarisation</th>
<th>Scaling factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(e^-) : P(e^+)$</td>
<td>$e^+e^- \rightarrow ZH$</td>
</tr>
<tr>
<td>unpolarised</td>
<td>1.00</td>
</tr>
<tr>
<td>-80% : 0%</td>
<td>1.12</td>
</tr>
</tbody>
</table>

All results shown in the following are based on realistic full detector simulations including the impact of beam-beam effects

No triggers

\Rightarrow all Higgs events used

Event selection efficiency

20-60 %
Higgs production

Higgsstrahlung $e^+e^- \rightarrow ZH$
Dominant at first energy stage $\sigma \sim 1/s$

WW fusion $e^+e^- \rightarrow Hv_\ell \nu_\ell$
Dominant above 500 GeV, large statistics at high energy stages $\sigma \sim \log(s)$

ttH production $e^+e^- \rightarrow ttH$
Accessible at second energy stage
Direct extraction of top Yukawa coupling

Graphical Representation

- **Higgsstrahlung**
- **WW fusion**
- **ttH production**

CLICdp

- Single Higgs production

Legend
- $e^+e^- \rightarrow ZH$, $\sqrt{s} = 350$ GeV
- $e^+e^- \rightarrow Hv_\ell \nu_\ell$, $\sqrt{s} = 350$ GeV
- $e^+e^- \rightarrow Hv_\ell \nu_\ell$, $\sqrt{s} = 1.4$ TeV
- $e^+e^- \rightarrow Hv_\ell \nu_\ell$, $\sqrt{s} = 3$ TeV
Recoil Method: ZH with $Z \rightarrow l^+l^-$ (l=e,μ)

Higgsstrahlung dominant production process at 380 GeV:
Recoil mass measurement only possible in e^+e^- collisions

ZH event identified from Z-recoil mass
→ Model independent measurement of $\sigma(ZH)$ and m_H

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$

$\Delta \sigma \ (HZ)/\sigma \ (HZ) = \pm \ 3.8 \%$
Recoil Method with $Z \rightarrow qq$

Fine grain calorimetry of CLIC detector ideal for particle flow reconstruction to achieve high precision in hadronic channels

$$\Delta\sigma (HZ) / \sigma (HZ) = \pm 1.8 \% \quad (Z \rightarrow qq, 350 \text{ GeV})$$

signal

background

![Signal and Background Plots]
Simultaneous extraction:

- Three decay modes bb/cc/gg
 \(\rightarrow \) precise flavour tagging
- Production Mode: ZH or WW fusion
 \(\rightarrow \) Higgs \(p_T \) spectrum

\[\sqrt{s} = 350 \text{ GeV}, \, L=500 \text{ fb}^{-1} \]

\[\begin{array}{cccc}
\text{Decay} & \text{Statistical uncertainty} \\
& \text{Higgsstrahlung} & \text{WW-fusion} \\
H \rightarrow b\bar{b} & 0.86 \% & 1.9 \% \\
H \rightarrow c\bar{c} & 14 \% & 26 \% \\
H \rightarrow gg & 6.1 \% & 10 \% \\
\end{array} \]

Fit templates using 2D distributions of
bb vs cc likelihoods

EPJC 76, 72 (2016)
arXiv:1708.08912
Invisible Higgs decays identified with recoil mass technique in a model independent way

At first energy stage 350 GeV, L=500 fb\(^{-1}\)

BR(H\(\rightarrow\)inv) < 0.97 % at 90 % CL

Example: Recoil mass from Z\(\rightarrow\)qq, assuming 100 % invisible Higgs decays
Higgs coupling: projected sensitivity

- Precision of all results limited by 0.8% of $\sigma(ZH)$ cross section measurement
- No assumptions on additional Higgs decays
- Relevant correlations included
- **Higgs width** extracted with 6.7 (350 GeV) – 3.5% precision (all three stages)

$$\begin{align*}
\sigma(ZH) & \sim g_{HZZ}^2 \\
\sigma(ZH) \times BR(H \rightarrow VV/ff) & \sim g_{HZZ}^2 g_{HVV/Hff}^2 / \Gamma_H \\
\sigma(H_{\nu e \nu e}) \times BR(H \rightarrow VV/ff) & \sim g_{HWW}^2 g_{HVV/Hff}^2 / \Gamma_H
\end{align*}$$

based on EPJC 76, 72 (2016)
Higgs coupling: projected sensitivity (2)

Model dependent fit:
\[\kappa_i^2 = \frac{\Gamma_i}{\Gamma_i^{SM}} \]

Assume SM decays Higgs only:
\[\frac{\Gamma_{H,md}}{\Gamma_H^{SM}} = \sum_i \kappa_i^2 BR_i \]

\[BR_i: \text{SM branching fractions} \]

Based on EPJC 77, 475 (2017)
ATLAS-PHYS-PUB-2014-016
Top Yukawa coupling

$\sigma(ttH)$ directly sensitive to top Yukawa coupling g_{ttH}

Studied in two final states:
- $ttH \rightarrow bqq blv bb$
- $ttH \rightarrow bqq bqq bb$
 \rightarrow similar sensitivity

$\sqrt{s} = 1.4$ TeV, $L = 1.5$ ab$^{-1}$

$\Delta g_{ttH}/g_{ttH} = 3.8\%$

$\sigma(ttH)$ sensitive to CP mixing in ttH coupling

$- ig_{ttH}(\cos\phi + i \sin\phi \gamma_5)$

Top physics at high-energy CLIC

527 by U. Schnoor
Double Higgs Production

e^+e^- \rightarrow HH\nu\nu: sensitive to quartic coupling g_{HHWW} and Higgs self-coupling λ, profits from operation at high energy

\[\Delta \lambda / \lambda = 16\% \text{ for } P(e^-) = -80\% \text{ from the total cross section} \]
\[\Delta \lambda / \lambda \approx 10\% \text{ for } P(e^-) = -80\% \text{ from diff. distributions} \]

Sizeable deviations of Higgs self-coupling from SM expectation in several BSM scenarios

<table>
<thead>
<tr>
<th>Model</th>
<th>$\Delta g_{hhh} / g_{hhh}^{SM}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed-in Singlet</td>
<td>$-18%$</td>
</tr>
<tr>
<td>Composite Higgs</td>
<td>tens of $%$</td>
</tr>
<tr>
<td>Minimal Supersymmetry</td>
<td>$-2%^a$ $-15%^b$</td>
</tr>
<tr>
<td>NMSSM</td>
<td>$-25%$</td>
</tr>
</tbody>
</table>

Measurement performed in HH\rightarrowbbbb final state
Conclusion and Summary

- A lepton collider is capable to enhance the understanding of the Higgs boson significantly beyond the precision of the HL-LHC

- Precise measurements of many Higgs couplings, Higgs mass and Higgs width using \textit{Higgsstrahlung} and \textit{WW} fusion processes

- Cross section and total Higgs width measured in a model-independent way

- Access to ttH at second energy stage at CLIC

- \textbf{Double Higgs production} measurement profits from highest possible energies
BACKUP
pp and e^+e^- production cross sections

pp collisions:
Small signal in vast amount of background, triggers needed

e^+e^- collisions:
Less amount of background, no need for triggers, “clean” environment
Lepton vs Hadron colliders

Protons are compound objects:
- Unknown initial state
- Limits achievable precision

High QCD background rates
- Triggers needed
- High levels of radiation

High energy circular colliders feasible

e^+e^- point like
- Well defined initial state (polarisation, \sqrt{s})
- High precision measurements

Cleaner experimental environment
- Triggers less readout possible
- Low levels of radiation

High energies ($\sqrt{s} > 350$ GeV) require linear collider
CLIC related contributions at ICHEP

Daniel Schulte: “The CLIC accelerator project status and plans” #884

Eva Sicking: “The CLIC detector” #528

Ulrike Schnoor: “Top-quark physics at high-energy CLIC operation” #527

Aleksander Zarnecki: “Top quark physics at the first CLIC stage” #526

Roberto Franceschini: “BSM searches at CLIC” #525
CLIC project timeline

2013 - 2019 Development Phase
Development of a Project Plan for a staged CLIC implementation in line with LHC results; technical developments with industry, performance studies for accelerator parts and systems, detector technology demonstrators

2020 - 2025 Preparation Phase
Finalisation of implementation parameters, preparation for industrial procurement, Drive Beam Facility and other system verifications, Technical Proposal of the experiment, site authorisation

2026 - 2034 Construction Phase
Construction of the first CLIC accelerator stage compatible with implementation of further stages; construction of the experiment; hardware commissioning

2019 - 2020 Decisions
Update of the European Strategy for Particle Physics; decision towards a next CERN project at the energy frontier (e.g. CLIC, FCC)

2025 Construction Start
Ready for construction; start of excavations

2035 First Beams
Getting ready for data taking by the time the LHC programme reaches completion

Higgs Session, July 7
ICHEP 2018
Matthias Weber
CERN
Systematic uncertainties

Example: analysis $\sigma(H\nu_e\nu_e) \times BR(H\rightarrow bb)$ statistical uncertainty 0.3 %

- Luminosity spectrum reconstructed from Bhabha scattering events \rightarrow expected uncertainties lead to 0.15 % syst on $\sigma(H\nu_e\nu_e) \times BR(H\rightarrow bb)$
- Total luminosity: luminometer expected to reach accuracy of a few permille
- Beam polarisation: expected to be controlled to 0.2% using single W,Z,γ events with missing energy \rightarrow syst uncertainty of 0.1 % on $\sigma(H\nu_e\nu_e) \times BR(H\rightarrow bb)$
- Jet energy scale: calibrated using $e^+e^-\rightarrow Z\nu_e\nu_e$, with $Z\rightarrow bb$
 biggest challenge for mass measurement, statistical uncertainty at 3 TeV is 44 MeV, systematic error of that scale requires JES uncertainty of 0.035 %
- Flavour tagging efficiency mostly affects the event rate \rightarrow b-tagging uncertainties lead to an syst uncertainty of 0.25 %
Recoil Method with $Z \rightarrow qq$

Optimization study for first CLIC stage

At 350 GeV highest precision in Hadronic Z decays

At 250 GeV largest signal cross-section, but background more signal like

At 450 GeV lower cross-section and worse jet energy resolution

Slightly beyond 350 GeV optimal for top physics as well

<table>
<thead>
<tr>
<th>\sqrt{s}</th>
<th>\mathcal{L}</th>
<th>$\sigma(HZ)$</th>
<th>$\Delta\sigma_{\text{vis.}}$</th>
<th>$\Delta\sigma_{\text{invis.}}$</th>
<th>$\Delta\sigma(HZ)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 GeV</td>
<td>500 fb$^{-1}$</td>
<td>136 fb</td>
<td>$\pm 3.63%$</td>
<td>$\pm 0.45%$</td>
<td>$\pm 3.65%$</td>
</tr>
<tr>
<td>350 GeV</td>
<td>500 fb$^{-1}$</td>
<td>93 fb</td>
<td>$\pm 1.71%$</td>
<td>$\pm 0.56%$</td>
<td>$\pm 1.80%$</td>
</tr>
<tr>
<td>420 GeV</td>
<td>500 fb$^{-1}$</td>
<td>68 fb</td>
<td>$\pm 2.42%$</td>
<td>$\pm 1.02%$</td>
<td>$\pm 2.63%$</td>
</tr>
</tbody>
</table>

EPJC 76, 72 (2016)
arXiv:1509.02853
Higgs mass measurements

Di-jet invariant mass for $H \rightarrow bb$
selection at $\sqrt{s} = 1.4$ TeV

Reconstructed invariant mass for
$H \rightarrow ZZ^* \rightarrow q\bar{q}l^+l^-$ selection at
$\sqrt{s} = 1.4$ TeV
Signal & background templates for hadronic H decays

bb likelihood vs cc likelihood for $e^+e^- \rightarrow ZH$ hadronic Higgs decay study

a) simulated data
$ZH; Z \rightarrow q\bar{q}, H \rightarrow jets$ candidates

b) fit template: $b\bar{b}$
$ZH; Z \rightarrow q\bar{q}, H \rightarrow b\bar{b}$

CLICdp $\sqrt{s} = 350$ GeV

c) fit template: $c\bar{c}$
$ZH; Z \rightarrow q\bar{q}, H \rightarrow c\bar{c}$

d) fit template: $g\bar{g}$
$ZH; Z \rightarrow q\bar{q}, H \rightarrow g\bar{g}$

e) fit template: other decays
$ZH; Z \rightarrow q\bar{q}, H \rightarrow others$

f) fit template: SM background

Higgs Session, July 7
ICHEP 2018
Overview: CLIC projections

$\sqrt{s} = 350$ GeV

$\sqrt{s} = 1.4$ & 3 TeV

<table>
<thead>
<tr>
<th>Channel</th>
<th>Measurement</th>
<th>Observable</th>
<th>350GeV</th>
<th>500 fb$^{-1}$</th>
<th>Statistical precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZH</td>
<td>$\sigma(\text{ZH}) \times \text{BR}(\text{H} \rightarrow \text{invisible})$</td>
<td>m_H</td>
<td>110 MeV</td>
<td>0.6%</td>
<td></td>
</tr>
<tr>
<td>ZH</td>
<td>$\sigma(\text{ZH}) \times \text{BR}(\text{Z} \rightarrow 1^+1^-)$</td>
<td>g_{HZZ}</td>
<td>3.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZH</td>
<td>$\sigma(\text{ZH}) \times \text{BR}(\text{Z} \rightarrow \text{q}\bar{\text{q}})$</td>
<td>g_{HZZ}</td>
<td>1.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZH</td>
<td>$\sigma(\text{ZH}) \times \text{BR}(\text{H} \rightarrow \text{b}\bar{\text{b}})$</td>
<td>$g_{\text{HZZ}}g_{\text{Hbb}}/\Gamma_H$</td>
<td>0.86%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZH</td>
<td>$\sigma(\text{ZH}) \times \text{BR}(\text{H} \rightarrow \text{c}\bar{\text{c}})$</td>
<td>$g_{\text{HZZ}}g_{\text{Hcc}}/\Gamma_H$</td>
<td>14%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZH</td>
<td>$\sigma(\text{ZH}) \times \text{BR}(\text{H} \rightarrow \text{gg})$</td>
<td>$g_{\text{HZZ}}g_{\text{Hgg}}/\Gamma_H$</td>
<td>6.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZH</td>
<td>$\sigma(\text{ZH}) \times \text{BR}(\text{H} \rightarrow \tau^+\tau^-)$</td>
<td>$g_{\text{HZZ}}g_{\text{Htt}/\Gamma_H}$</td>
<td>6.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZH</td>
<td>$\sigma(\text{ZH}) \times \text{BR}(\text{H} \rightarrow \text{WW}^*)$</td>
<td>$g_{\text{HZZ}}g_{\text{HWW}}/\Gamma_H$</td>
<td>5.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{H}{\text{V}}\text{V}{\text{e}}$</td>
<td>$\sigma(\text{H}{\text{V}}\text{V}{\text{e}}) \times \text{BR}(\text{H} \rightarrow \text{b}\bar{\text{b}})$</td>
<td>$g_{\text{HWW}}g_{\text{Hbb}}/\Gamma_H$</td>
<td>1.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{H}{\text{V}}\text{V}{\text{e}}$</td>
<td>$\sigma(\text{H}{\text{V}}\text{V}{\text{e}}) \times \text{BR}(\text{H} \rightarrow \text{c}\bar{\text{c}})$</td>
<td>$g_{\text{HWW}}g_{\text{Hcc}}/\Gamma_H$</td>
<td>26%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{H}{\text{V}}\text{V}{\text{e}}$</td>
<td>$\sigma(\text{H}{\text{V}}\text{V}{\text{e}}) \times \text{BR}(\text{H} \rightarrow \text{gg})$</td>
<td>$g_{\text{HWW}}g_{\text{Hgg}}/\Gamma_H$</td>
<td>10%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unpolarised electron beam

- Expected to collect more data with $P(e^-) = -80\%$ at high energy

†: fast simulation

*: extrapolated from 1.4 to 3 TeV

Comparison of different collider options

Many EFT parameters can be measured significantly better at CLIC compared to the HL-LHC

H → cc only accessible in at lepton colliders

arXiv:1704.02333
see also JHEP 1705, 096 (2017)
CLIC beam environment

Low duty cycle \rightarrow power pulsing
High luminosity
Very small bunch size at IP
Very strong electromagnetic field from opposite beam \rightarrow Beamstrahlung

- **Coherent** and **trident** e^+e^- pairs very forward
- Contribution from **incoherent** e^+e^- pairs (3×10^5 per BX) in detector region
- Main background in calorimeters and tracker from $\gamma\gamma \rightarrow$ hadrons
 (3.2 evts per BX at 3 TeV)
\rightarrow beam background reduced by p_T and timing cuts