

Higgs physics at CLIC

Matthias Weber (CERN)

on behalf of the CLIC detector and physics (CLICdp) collaboration

Compact Linear Collider

2

Proposed e⁺e⁻ linear collider

- High acceleration gradient 100 MV/m
- Two beam acceleration scheme
- Staged construction up to 3 TeV
 - High precision physics
 - Higgs, top, BSM

Stage	\sqrt{s} (GeV)	\mathscr{L}_{int} (fb ⁻¹)
1	380	500
	350	100
2	1500	1500
3	3000	3000

Slightly different energies assumed in physics performance studies for first two stages $380 \rightarrow 350$ GeV, 1.5 TeV $\rightarrow 1.4$ TeV

Higgs bosons in e⁺e⁻ collisions

Energy stage	# Higgs produced
350 GeV	100000
1.4 TeV	430000
3 TeV	1400000

Numbers for unpolarised beams

Polarised beams can enhance production modes significantly

Polarisation	Scaling factor				
$P(e^-): P(e^+)$	$e^+e^- \rightarrow ZH$	$e^+e^-\!\to H\nu_e\overline{\nu}_e$	$e^+e^- \rightarrow He^+e^-$		
unpolarised $-80\%: 0\%$	1.00 1.12	1.00 1.80	1.00 1.12		

All results shown in the following are based on realistic full detector simulations including the impact of beam-beam effects No triggers →all Higgs events used

Event selection efficiency 20-60 %

CERN

Higgs production

Higgsstrahlung $e^+e^- \rightarrow ZH$ Dominant at first energy stage $\sigma \sim 1/s$

WW fusion $e^+e^- \rightarrow Hv_e v_e$ Dominant above 500 GeV, large statistics at high energy stages $\sigma \sim \log(s)$

ttH production e⁺e⁻→ttH

Accessible at second energy stage Direct extraction of top Yukawa coupling

Higgs Session, July 7 ICHEP 2018 Η

Matthias Weber CERN

Recoil Method: ZH with $Z \rightarrow l^+l^-$ ($l=e,\mu$)

Higgsstrahlung dominant production process at 380 GeV: Recoil mass measurement only possible in e⁺e⁻ collisions

ZH event identified from Z-recoil mass \rightarrow Model independent measurement of σ (ZH) and m_H

 $\Delta \sigma (HZ) / \sigma (HZ) = \pm 3.8 \%$

CERN

Fine grain calorimetry of CLIC detector ideal for particle flow reconstruction \rightarrow achieve high precision in hadronic channels

 $\Delta \sigma (HZ) / \sigma (HZ) = \pm 1.8 \%$ (Z \rightarrow qq, 350 GeV)

H→bb/cc/gg at $\sqrt{s} = 350$ GeV

Simultaneous extraction:

- Three decay modes bb/cc/gg
 → precise flavour tagging
- Production Mode: ZH or WW fusion
 →Higgs p_T spectrum

$\sqrt{s} = 350 \text{ GeV}, L = 500 \text{ fb}^{-1}$

EPJC 76, 72 (2016) arXiv:1708.08912 Fit templates using 2D distributions of bb vs cc likelihoods

Invisible Higgs Decays

Invisible Higgs decays identified with recoil mass technique in a model independent way

At first energy stage 350 GeV, L=500 fb⁻¹

 $BR(H \rightarrow inv) < 0.97 \%$ at 90 % CL

EPJC 76, 72 (2016) arXiv:1708.08912 Events / 4 GeV 0002 2000 CLICdp $\sqrt{s} = 350 \text{ GeV}$ ZH; $H \rightarrow invis$. signal (100 % BR) background 3000 2000 1000 0 180 100 120 140 160 200 80 m_{rec} [GeV]

Example: Recoil mass from $Z \rightarrow qq$, assuming 100 % invisible Higgs decays

Higgs coupling: projected sensitivity

 $\begin{aligned} &\sigma(ZH) \sim g^2_{HZZ} \\ &\sigma(ZH) \ge BR(H \rightarrow VV/ff) \sim g^2_{HZZ} g^2_{HVV/Hff} / \Gamma_H \\ &\sigma(H\nu_e \nu_e) \ge BR(H \rightarrow VV/ff) \sim g^2_{HWW} g^2_{HVV/Hff} / \Gamma_H \end{aligned}$

- Precision of all results limited by 0.8 % of σ(ZH) cross section measurement
 - No assumptions on additional Higgs decays
 - Relevant correlations included
 - Higgs width extracted with 6.7 (350 GeV) 3.5 % precision (all three stages)

based on EPJC 76, 72 (2016)

Higgs coupling: projected sensitivity (2)

$$\kappa_i^2 = \Gamma_i / \Gamma_i^{\mathrm{SN}}$$

Based on EPJC 77, 475 (2017) ATLAS-PHYS-PUB-2014-016

10

Top Yukawa coupling

 σ (ttH) sensitive to CP

mixing in ttH coupling

 $-ig_{ttH}(\cos\phi + i\sin\phi\gamma_5)$

CLICdp

√s = 1.4 TeV

PHYSSIM

0.8

sin²¢

 σ (ttH) directly sensitive to top Yukawa coupling g_{ttH}

σ(e⁺e⁻→ tīH) [fb] 5.2 5

0.5

0

2

preliminary

 $\sigma(ttH)$ vs sin² Φ

0.4

0.2

0.4 sin²∲

0.3

0.2

0.1

0

0

 \triangleleft

CLICdp

√s = 1.4 TeV

0.2

preliminary

Sensitivity vs $\sin^2 \Phi$

0.4

0.6

ttH→bbbbqqτv

- - Semi-leptonic

- E- Fully-hadronic

Combined

Studied in two final states: ttH \rightarrow bqq blv bb $ttH \rightarrow bqq bqq bb$ \rightarrow similar sensitivity

$$\sqrt{s} = 1.4 \text{ TeV}, L = 1.5 \text{ ab}^{-7}$$

 $\Delta g_{ttH}/g_{ttH} = 3.8 \%$

Top physics at high-energy CLIC # 527 by U. Schnoor

Higgs Session, July 7 **ICHEP 2018**

0.6

Matthias Weber **CERN**

sin²¢

0.8

Double Higgs Production

 $e^+e^- \rightarrow HHvv$: sensitive to quartic coupling g_{HHWW} and Higgs self-coupling λ , profits from operation at high energy e^+ \overline{v}_e e^+ \overline{v}_e

 e^{-} v_e e^{-} v_e

L=1.4 ab⁻¹ at \sqrt{s} =1.4 TeV + 3 ab⁻¹ at \sqrt{s} =3 TeV: $\Delta\lambda/\lambda = 16\%$ for P(e⁻) = -80% from the total cross section $\Delta\lambda/\lambda \approx 10\%$ for P(e⁻) = -80% from diff. distributions

Measurement performed in HH→bbbb final state

Sizeable deviations of Higgs self-coupling from SM expectation in several BSM scenarios

•	
Model	$\Delta g_{hhh}/g_{hhh}^{SM}$
Mixed-in Singlet	-18%
Composite Higgs	tens of $\%$
Minimal Supersym	metry $-2\%^{a}$ $-15\%^{b}$
NMSSM	-25%
	Phys. Rev. D 88, 055024 (2013)
Higgs Session, July 7	

Higgs Session, July 7 ICHEP 2018

- A lepton collider is capable to enhance the understanding of the Higgs boson significantly beyond the precision of the HL-LHC
- Precise measurements of many Higgs couplings, Higgs mass and Higgs width using Higgsstrahlung and WW fusion processes
- Cross section and total Higgs width measured in a model-independent way
- Access to ttH at second energy stage at CLIC
- Double Higgs production measurement profits from highest possible energies

BACKUP

pp and e⁺e⁻ production cross sections

Small signal in vast amount of background, triggers needed

Lepton vs Hadron colliders

Protons are compound objects:

- Unkown initial state
- Limits achievable precision

High QCD background rates

- Triggers needed
- High levels of radiation

High energy circular colliders feasible

e⁺e⁻ point like

- Well defined initial state (polarisation, \sqrt{s})
- High precision measurements

Cleaner experimental environment

- Triggers less readout possible
- Low levels of radiation

High energies ($\sqrt{s} > 350$ GeV) require linear collider

CLIC related contributions at ICHEP

Daniel Schulte: "The CLIC accelerator project status and plans" #884

Eva Sicking: "The CLIC detector" #528

Ulrike Schnoor: "Top-quark physics at high-energy CLIC operation" #527

Aleksander Zarnecki: "Top quark physics at the first CLIC stage" #526

Roberto Franceschini: "BSM searches at CLIC" #525

CLIC project timeline

2013 - 2019 Development Phase

Development of a Project Plan for a staged CLIC implementation in line with LHC results; technical developments with industry, performance studies for accelerator parts and systems, detector technology demonstrators

2020 - 2025 Preparation Phase

Finalisation of implementation parameters, preparation for industrial procurement, Drive Beam Facility and other system verifications, Technical Proposal of the experiment, site authorisation

2026 - 2034 Construction Phase

Construction of the first CLIC accelerator stage compatible with implementation of further stages; construction of the experiment; hardware commissioning

2019 - 2020 Decisions

Update of the European Strategy for Particle Physics; decision towards a next CERN project at the energy frontier (e.g. CLIC, FCC)

2025 Construction Start

Ready for construction; start of excavations

2035 First Beams

Getting ready for data taking by the time the LHC programme reaches completion

Higgs Session, July 7 ICHEP 2018

Example: analysis $\sigma(Hv_ev_e) \ge BR(H \rightarrow bb)$ statistical uncertainty 0.3 %

- Luminosity spectrum reconstructed from Bhabha scattering events \rightarrow expected uncertainties lead to 0.15 % syst on $\sigma(Hv_ev_e) \ge BR(H \rightarrow bb)$
- Total luminosity: luminometer expected to reach accuracy of a few permille
- Beam polarisation: expected to be controlled to 0.2% using single W,Z, γ events with missing energy \rightarrow syst uncertainty of 0.1% on $\sigma(Hv_ev_e) \ge BR(H \rightarrow bb)$
- Jet energy scale: calibrated using e⁺e⁻→Zv_ev_e, with Z→bb
 biggest challenge for mass measurement, statistical uncertainty at 3 TeV is 44
 MeV, systematic error of that scale requires JES uncertainty of 0.035 %
- Flavour tagging efficiency mostly affects the event rate → b-tagging uncertainties lead to an syst uncertainty of 0.25 %

Recoil Method with Z \rightarrow qq

 $\sqrt{s} = 420 \text{ GeV}$

110

110

 $\sqrt{s} = 250 \text{ GeV}$

 $\sqrt{s} = 350 \text{ GeV}$

Optimization study for first CLIC stage

At 350 GeV highest precision in Hadronic Z decays

At 250 GeV largest signal crosssection, but background more signal like

At 450 GeV lower cross-section and worse jet energy resolution

Slightly beyond 350 GeV optimal for top physics as well

> EPJC 76, 72 (2016) arXiv:1509.02853

Di-jet invariant mass for $H \rightarrow bb$ selection at $\sqrt{s} = 1.4$ TeV

Reconstructed invariant mass for $H \rightarrow ZZ^* \rightarrow qql^{+}l^{-}$ selection at $\sqrt{s} = 1.4 \text{ TeV}$

Signal & background templates for hadronic H decays

bb likelihood vs cc likelihood for $e^+e^- \rightarrow ZH$ hadronic Higgs decay study

Overview: CLIC projections

$\sqrt{s} = 1.4 \& 3 \text{ TeV}$

							Statistical precision	
			Statistical precision	Channel	Measurement	Observable	1.4 TeV	3 TeV
Channel	Measurement	Observable	350GeV				$1.5 {\rm ab}^{-1}$	3.0ab^{-1}
			$500\mathrm{fb}^{-1}$	$H\nu_e\overline{\nu}_e$	$H \rightarrow b \overline{b}$ mass distribution	$m_{ m H}$	47 MeV	36 MeV
ZH	Recoil mass distribution	$m_{ m H}$	110 MeV	ZH	$\sigma(\mathrm{ZH}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g^2_{ m HZZ}g^2_{ m Hbb}/\Gamma_{ m H}$	$3.3\%^{\dagger}$	$5.6\%^{\dagger}$
ZH	$\sigma(\mathrm{ZH}) \times BR(\mathrm{H} \to \mathrm{invisible})$	$\Gamma_{ m inv}$	0.6%	$H\nu_e\overline{\nu}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g_{\rm HWW}^2 g_{\rm Hbb}^2 / \Gamma_{\rm H}$	0.4%	0.3%
ZH	$\sigma(\mathbf{ZH}) \times BR(\mathbf{Z} \to \mathbf{l}^+ \mathbf{l}^-)$	$g^2_{\rm HZZ}$	3.8%	$H\nu_e\overline{\nu}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{c}\overline{\mathrm{c}})$	$g^2_{ m HWW}g^2_{ m Hcc}/\Gamma_{ m H}$	6.1%	5.6%
ZH	$\sigma(\mathbf{ZH}) \times BR(\mathbf{Z} \to \mathbf{q}\overline{\mathbf{q}})$	² ² ² ² ² ²	1.8%	$Hv_e\overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times \mathit{BR}(\mathrm{H} \to \mathrm{gg})$		5.0%	3.5%
ZH	$\sigma(ZH) \times BR(H \rightarrow b\overline{b})$	$g_{\rm HZZ}^2 g_{\rm Hbb}^2 / \Gamma_{\rm H}$	0.86%	$H\nu_e\overline{\nu}_e$	$\sigma(\mathrm{H}\nu_{\mathrm{e}}\overline{\nu}_{\mathrm{e}}) \times BR(\mathrm{H} \to \tau^{+}\tau^{-})$	$g^2_{ m HWW}g^2_{ m H au au}/\Gamma_{ m H}$	4.2%	3.6%
ZH	$\sigma(\mathrm{ZH}) \times BR(\mathrm{H} \to \mathrm{c}\overline{\mathrm{c}})$	$g_{\rm HZZ}^2 g_{\rm Hcc}^2 / \Gamma_{\rm H}$	14%	$H\nu_e\overline{\nu}_e$	$\sigma(\mathrm{H}\nu_{\mathrm{e}}\overline{\nu}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mu^{+}\mu^{-})$	$g^2_{ m HWW}g^2_{ m H\mu\mu}/arGamma_{ m H}$	38%	20%
ZH	$\sigma(ZH) \times BR(H \rightarrow gg)$	SHZZSHUT H	6.1%	$H\nu_e\overline{\nu}_e$	$\sigma(\mathrm{H} \mathrm{v}_{\mathrm{e}} \overline{\mathrm{v}}_{\mathrm{e}}) imes \mathit{BR}(\mathrm{H} ightarrow \mathrm{\gamma} \mathrm{\gamma})$		15 %	$8\%^*$
ZH	$\sigma(ZH) \times BR(H \rightarrow \tau^+ \tau^-)$	$g^2_{ m HZZ} g^2_{ m H au au}/\Gamma_{ m H}$	6.2%	$Hv_e\overline{v}_e$	$\sigma(\mathrm{H}\nu_{\mathrm{e}}\overline{\nu}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{Z}\gamma)$	4	42%	$24\%^{*}$
ZH	$\sigma(\mathbf{ZH}) \times BR(\mathbf{H} \to \mathbf{WW}^*)$	$g_{\rm HZZ}^2 g_{\rm HWW}^2 / \Gamma_{\rm H}$	5.1%	$H\nu_e\overline{\nu}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{WW}^{*})$	$g_{\rm HWW}^4/\Gamma_{\rm H}$	1.0%	$0.6\%^*$
$Hv_e\overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g_{\rm HWW}^2 g_{\rm Hbb}^2 / \Gamma_{\rm H}$	1.9%	$Hv_e\overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{ZZ}^{*})$	$g^2_{ m HWW}g^2_{ m HZZ}/\Gamma_{ m H}$	5.6%	$3.2\%^{*}$
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{c}\overline{\mathrm{c}})$	$g_{\rm HWW}^2 g_{\rm Hcc}^2 / \Gamma_{\rm H}$	26%	He^+e^-	$\sigma(\mathrm{He^+e^-}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g^2_{ m HZZ} g^2_{ m Hbb}/ arGamma_{ m H}$	1.8%	$1.9\%^{*}$
$Hv_e \overline{v}_e$	$\sigma(\mathrm{H}\nu_{\mathrm{e}}\overline{\nu}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{gg})$		10%	tīH	$\sigma(t\bar{t}H) \times BR(H \to b\bar{b})$	$g_{ m Htt}^2 g_{ m Hbb}^2 / \Gamma_{ m H}$	7.3%	_
				$HH\nu_e\overline{\nu}_e$	$\sigma(\mathrm{HHv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}})$	λ	54%	24%
тт	1 • 1 1 / 1			$HH\nu_e\overline{\nu}_e$	with $-80\% e^-$ polarisation	λ	40%	18%

$\sqrt{s} = 350 \text{ GeV}$

Unpolarised electron beam

• Expected to collect more data with $P(e^-) = -80\%$ at high energy

- [†]: fast simulation
- *: extrapolated from 1.4 to 3 TeV

Based on Eur. Phys. J. C 77, 475 (2017)

Matthias Weber CERN

Comparison of different collider options

precision reach of the 12-parameter fit in Higgs basis

• Many EFT parameters can be measured significantly better at CLIC compared to the HL-LHC

• $H \rightarrow cc$ only accessible in at lepton colliders

arXiv:1704.02333 see also JHEP 1705, 096 (2017)

Matthias Weber CERN

CLIC beam environment

- Low duty cycle \rightarrow power pulsing
- High luminosity
- Very small bunch size at IP
- Very strong electromagnetic field from opposite beam \rightarrow Beamstrahlung
- Coherent and trident e⁺e⁻ pairs very forward
- Contribution from incoherent e⁺e⁻ pairs (3x10⁵ per BX) in detector region
- Main background in calorimeters and tracker from γγ→hadrons
 - (3.2 evts per BX at 3 TeV)
- \rightarrow beam background reduced by p_T and timing cuts