

SM & BSM Higgs Physics at the LHeC and FCC-eh

Chen Zhang (张宸) (NCTS)

On Behalf of the LHeC Higgs Group

Jul 7th, 2018

ICHEP 2018 @COEX, Seoul

Motivation for Higgs Physics

- A most precise determination of the Higgs properties will be a glorious landmark of human civilization that undoubtedly exhibits the meaning of human existence.
- =>Fundamental Curiosity

- A most precise determination of the Higgs properties will shape our understanding of the universe in a deepest possible manner.
- =>Fundamental Paradigm

Collider Type Consideration

- Hadron Colliders: (HL-)LHC, FCC-hh
 - Large signal cross sections but not-so-clean environment
- Electron-Positron Colliders: FCC-ee, CEPC, ILC, CLIC
 - Small signal cross sections but clean environment
 - Ideal for Higgs studies in many channels
 - Project schedule/availability is subject to large uncertainties
- Lepton-Hadron Colliders: LHeC (Large Hadron Electron Collider), FCC-eh
 - Signal cross sections comparable to lepton colliders
 - Much cleaner than pp => suited for improving dirty channels at pp
 - Expected to run synchronously with the corresponding pp machine
 - Cost much less than a fully new lepton collider

LHeC and FCC-eh

- LHeC:
 - 60 GeV electron (with -0.8 polarization) times 7 TeV proton ($\sqrt{s=1.3}$ TeV)
 - Expected to run synchronously with the HL-LHC, integrated luminosity ~lab^{-l}(default)
 - Higgs production: WW fusion~200fb, ZZ fusion~25fb

- FCC-eh:
 - 60 GeV electron (with -0.8 polarization) times 50TeV proton (\sqrt{s} =3.5TeV)
 - Expected to run synchronously with the FCC-hh, integrated luminosity $\sim O(1)ab^{-1}$
 - Higgs production: WW fusion~1000fb, ZZ fusion~150fb

Higgs to bb at the LHeC: Cut-Based Results

- Higgs to bb at the LHeC: using CC channel, detector-level cut-based study performed by M. Kuze & M. Tanaka.
- Forward electron tagging vetoes 90% of PHP backgrounds.

Higgs to bb/cc at the LHeC: BDT Analysis

Invisible Higgs Decay at the LHeC & FCC-eh

- Invisible Higgs Decay: Important constraint on DM
 - Using ZZ fusion channel, signature: electron+jet+MET
 - No counterpart of QCD Vjj backgrounds
 - 2σ upper limit at LHeC: BR~5.5% (BDT Analysis)
 - 2σ upper limit at FCC-eh: BR~1.7% (BDT Analysis)

Parton level study: Tang, Zhang and Zhu, PRD94, 011702(R)(2016) BDT study: M. Kuze, S. Kawaguchi, T. Sekine

Exotic Higgs Decay $h{\rightarrow} 2\phi \rightarrow 4b$ at the LHeC and FCC-eh

• Exotic Higgs Decay $h \rightarrow 2\phi \rightarrow 4b$: Well-motivated, Difficult at (HL-)LHC

l ab⁻¹, FCC-eh, detector level study: U. Klein, M. o'Keefe

r BDT>0	20			60		$Z = \sqrt{2} \left[(S+B) \ln \left(1 + \right) \right]$	
BR (%)	σ (fb)	Δσ (fb)	Z	σ (fb)	Δσ (fb)	Z	
0.2	0.03	0.02	1.14	0.03	0.03	3 1.17	
0.4	0.05	0.02	2.27	0.07	0.03	3 2.33	
0.6	0.08	0.02	3.37	0.10	0.03	3.47	
0.8	0.10	0.02	4.46	0.13	0.03	4.59	
1	0.13	0.03	5.54	0.17	0.03	3 5.71	

Precision of Signal Strengths at the LHeC/FCC-eh

Note:Very preliminary results

M+U.Klein, 6.3.18

 $E_e = 60 \text{ GeV}$ LHeC $E_p = 7 \text{ TeV}$ L=1ab⁻¹ HE-LHC $E_p = 14 \text{ TeV}$ L=2ab⁻¹ FCC: $E_p = 50 \text{ TeV}$ L=2ab⁻¹

Prospects of Higgs Couplings at the LHeC

Note:Very preliminary results

precision (dark red) at LHC with pp + ep using SM assumptions.

HL-LHC prospects using ATLAS 2014 projections ($3ab^{-1}$) w and w/o theoretical uncertainties ('no thy unc') in a SM coupling fit \rightarrow will be updated with HL-LHC yellow report in preparation

Top-Higgs Coupling at the LHeC

• Top-Higgs associated production: sensitive to relative phase and magnitude of htt and hWW couplings $\mathcal{L} = -\frac{m_t}{m_t} \bar{t} [\kappa \cos \zeta_t + i\gamma_5 \sin \zeta_t] t h$

Di-Higgs Production at the FCC-eh

Di-Higgs production: probing h³ and hhVV couplings (M. Kumar, X. Ruan, R. Islam, A. S. Cornell, M. Klein, U. Klein & B. Mellado, PLB 764(2017)247). Anomalous hWW couplings can also be probed at the LHeC using azimuthal angle correlations (S. S. Biswal, R. M. Godbole, B. Mellado, & S. Raychaudhuri et al., PRL 109, 261801(2012)).

Probing Extended Higgs Sector at the LHeC & FCC-eh

• NMSSM:

- Light neutral CP-even Higgs @LHeC: e+2b+j or 2b+j+MET. (S. P. Das & M. Nowakowski, PRD 96, 055014(2017))
- Light charged Higgs @FCC-eh: b+2j+MET. (S. P. Das, J. Hernández-Sánchez, S. Moretti & A. Rosado, 1806.08361)
- Two Higgs Doublet Model:
 - Type I CP-even Higgs @LHeC & FCC-eh. (C. Mosomane, M. Kumar, A. S. Cornell & B. Mellado, 1707.05997)
 - Type III Flavor-violating Higgs @LHeC: b+2j+MET. (S. P. Das, J. Hernández-Sánchez, S. Moretti, A. Rosado, R. Xoxocotzi, PRD 94, 055003 (2016))
- Georgi-Machacek Model:
 - Doubly charged Higgs @LHeC & FCC-eh: same-sign dimuon+j+MET. (H. Sun, X. Luo, W. Wei & T. Liu, PRD 96, 095003 (2017)).
 - Singly charged Higgs @LHeC & FCC-eh: 3I+3j. (G.Azuelos, H. Sun & K.Wang., PRD 97, 116005 (2018)).

Most up-to-date Information:

Workshop: LHeC/FCCeh and PERLE Last week at Orsay near Paris

http://lhec.web.cern.ch

https://indico.cern.ch/event/698368/

New and Updates on

Physics: PDFs, QCD, H, t, BSM, eA + Relation eh-hh..
Accelerator: IR, Optics, Lattice, Cost-Energy, CE..
Detector: the GPD and its fwd and bwd detectors
PERLE: Source, Injector, Cavity, Cryomodule,... Physics
Project Development towards the ES2020:
LHeC + FCCeh+ PERLE input 12/18. PERLE TDR in 2019.

Summary

- The LHeC & FCC-eh project
 - LHeC: 60 GeV electron times 7TeV proton ($\sqrt{s=1.3TeV}$), synchronous with HL-LHC
 - FCC-eh: 60 GeV electron times 50 TeV proton ($\sqrt{s}=3.5$ TeV), synchronous with FCC-hh
- Highlights of Higgs physics at the LHeC and FCC-eh

	LHeC (Iab ^{-I})	FCC-eh (lab ^{-l})		
Bottom Yukawa	0.5%	0.2%		
Charm Yukawa	4%	I.8%		
Other Interesting Measurements	Invisible & exotic Higgs decays, tth, hVV, hhVV, di-Higgs, extended Higgs sector, etc.			

• The LHeC & FCC-eh offer an excellent opportunity to improve Higgs-related measurements by maximally exploiting the infrastructure of future high-energy hadron colliders. If a lepton collider is not available, then the ep machine will be our best imaginable (perhaps only) option to boost Higgs-related measurements beyond what can be achieved at the corresponding hadron collider.

Backup

LHeC Prospects

- The ep interaction does not disturb pp, i.e. the LHC may become a twin collider, ep and pp operate concurrently and no luminosity loss is planned for pp. This requires a premounted eh detector which may then be inserted in 2 years.
- At LS4 (~2030) the heavy ion LHC operation ends and one may propose a different use of IP2 which currently houses ALICE.
- The electron beam energy (> 50 GeV) and luminosity (O(10³⁴) cm⁻² s⁻¹) goals are derived from Higgs, top and BSM physics, also DIS itself (F_L, low x~1/s).
- The cost of the O(1) TeV ep collider is a small fraction of any other big project currently under discussion. The LHC determines the time frame. This may extend considerably if CERN moves to HE LHC in the fourties.
- The ERL technology is being developed worldwide (Darmstadt, Cornell, Berlin, Novosibirsk, Jefferson Lab). PERLE would be a multi-turn 802 MHZ ERL technology development and test facility which would timely accompany the LHeC progress.
- We celebrate this year the 50th anniversary of the discovery of quarks. This was not planned and achieved by a step in energy with a linac SHORTER than LHeC's
- There is a very long term future for eh as part of hh in the FCC vision

Relevance of ultra-precise PDF

Analysis Framework and 'Detector'

Event generation

- SM or BSM production
- CC & NC DIS background

- Calculate cross section with tree-level Feynman diagrams (any UFO) using <u>pT of scattered quark</u> <u>as scale (CDR ŝ)</u> for ep processes with MadGraph5
- Higgs mass 125 GeV as default
- Fragmentation & hadronisation uses epcustomised Pythia.
- Delphes 'detector' → displaced vertices and signed impact parameter distributions → studied for LHeC, and used for FCC-eh SM Higgs extrapolations
- 'Standard' GPD LHC-style detectors used and further studied based on optimising Higgs measurements, i.e. vertex resolution a la ATLAS IBL of ~ 5 µm, excellent hadronic and elmag resolutions using 'best' state-of-the art detector technologies (no R&D 'needed')

 $\mu = -$

New: Estimates of Higgs Prospects

- Use LO Higgs cross sections σ_H for M_H=125 GeV, in [fb], and branching fractions BR(H→XX from Higgs Cross Section Handbook (c.f. appendix)
- Apply further branching, BR(X→FS) in case e.g. of W→ 2 jets and use acceptance, Acc, estimates based on MG5, for further decay
- Use reconstruction efficiencies, ε, achieved at LHC Run-1, see e.g. prospect calculations explored in arXiV:1511.05170
- Use fully simulated LHeC Hbb and Hcc results as baseline for S/B ranges
- Use fully simulated Higgs to invisible for 3 ep c.m.s. scenarios as guidance for extrapolation uncertainty (~25%)
- Estimate HIggs events per decay channel for certain Luminosity in [fb⁻¹]

$$N = \sigma_{H} \bullet BR(H \to XX) \bullet BR(X \to FS) \bullet L$$

• Calculate uncertainties of signal strengths w.r.t. SM expectation

$$\frac{\delta\mu}{\mu} = \frac{1}{\sqrt{N}} \bullet f$$
 with $f = \sqrt{\frac{1+1/(S/B)}{Acc \bullet \varepsilon}}$

CC DIS WWH \rightarrow H

FCC-he L=2 ab⁻¹

	bb	ww	gg	π	сс	ZZ	γγ
BR2014	0.577	0.215	0.086	0.0632	0.0291	0.0264	0.00228
δBR_{theory}	3.2%	4.2%	10.1%	5.7%	12.2%	4.2%	5.0%
Ν	1.15 10 ⁶	4.3 10 ⁵	1.72 10 ⁵	1.26 10 ⁵	5.8 10 ⁴	5.2 10 ⁴	4600
f	2.86 _{BDT}	16	7.4	5.9	5.6 _{BDT}	8.9	3.23
δμ/μ [%]	0.27	2.45	1.78	1.65	2.36	3.94	4.74

Further coupling constraints to be explored (simplified for illustration only!):

$$\sigma(WW \to H \to WW) \propto \kappa^{4}(HWW)$$

$$\sigma(WW \to H \to bb) \propto \kappa^{2}(HWW) \cdot \kappa^{2}(Hbb)$$

$$\sigma(WW \to H \to \tau\tau) \propto \kappa^{2}(HWW) \cdot \kappa^{2}(H\tau\tau)$$

$$\sigma(WW \to H \to gg) \propto \kappa^{2}(HWW) \cdot \kappa^{2}(Hgg)$$

$$\sigma(WW \to H \to cc) \propto \kappa^{2}(HWW) \cdot \kappa^{2}(Hcc)$$

$$\sigma(WW \to H \to ZZ) \propto \kappa^{2}(HWW) \cdot \kappa^{2}(HZZ)$$

Note: $\sigma(ZZ \to H \to WW) \propto \kappa^{2}(HZZ) \cdot \kappa^{2}(HWW)$