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Refs : Higgs-boson-pair production H(—=>bb™)H(—=>vy) from gluon fusion at the HL-LHC and HL-100 TeV hadron collider (Arxiv :1804.07130)
Higgs-boson-pair production H(=>bb™)H(=>yy) from gluon fusion with multivariate techenique (Work in Progress)
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Distrcuctive interference !
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further suppressed by each decay branching fractions.

In the SM, hh rates are small : In the leading gluon fusion production mode, the cross section at 14 TeV is only 40 fb,



Why Higgs pair production so difficult ?

- Xsec(gg -> hh) = 39.64 22 (scale) +2.1 (PDF) + 2.2 (ag) fbo @ [14 TeV, m;, = 125 GeV]

NNLO cross sections including top quark mass effects to NLO
Phys. Rev. Lett. 117, 012001 [S.Borowka, et al. ]

- 0 (10”7-3) smaller than the single Higgs production (SM)
Xsec(gg -> hh)~40fp (—————————) Xsec(gg->h)~ 50 pb @ 14 TeV

- For the reference, with Xsec ~ 33 fb at 13 TeV,
2017 LHC @ 13 TeV with 40 fb"-1 =) 1320 Events
14 TeV with 40 fb/A-1 =====) 1600 Events



Why Higgs pair production so interesting ?

mmmm)  Allows accessing crucial components of the Higgs sector !!!
I SEN

can help to reconstruct the electroweak symmetry breaking potential

can probe the Higgs self-coupling

may reveal the doublet nature of the Higgs by means of the hhVV coupling




Machine Learning approaches to
the Higgs boson self coupling

(D BDT(Boosted Decision Tree) : bbYY
1. Phys.Rev. D96 (2017) no.3, 035022 (Alves, Alexandre et al.) arXiv:1704.07395 [hep-ph]

BDT + kinematic cuts =) 5 ¢ (4.6 o) significance with 10 %(20%) systematics and 3 ab”-1

@ (Supervising) Deep Neural Networks (DNN) : bbWW + bbtt
1. “Supervising Deep Neural Networks with topological augmentation in search for di-Higgs production
at the LHC (Won Sang Cho, next speaker) AUC of ROC = 0.991
5 classes by the number of leptonic taus —> Eff(sig)
Optimass & its compatibility distance with dim. Of vars ~ 40 @(Background purity=0.01) = 0.84
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(3 DNN ( ANN : a multi-layer feed-forward artificial neural network ) : bbbb
1. Eur. Phys. J. C(2016) 76:386 (Katharina Behr, Bortoletto et al.) arXiv:1512.08928 [hep-ph]

DNN + kinematic cuts ) \/% ~ 3 o significance with 3 abA-1
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Background rejection versus Signal efficiency
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Background rejection

Boosted Decision Trees with gradient boosting (BDTG)



Summary Table

Channel Achievable Papers
Slgnlflcance (o)

bbbb Kinematic Cuts+ DNN  Eur. Phys. J. C (2016) 76:386 HL-LHC (3 ab”-1)

~(3.1~5.7) DNN Arxiv: 1609.002541 100 TeV FCC (10 ab”-1)
bbWW

DNN Dr. Won Sang Cho’s talk HL-LHC (3 ab”-1)

bbtt
WWWW
bbYY ~5(4.6) Kinematic Cuts + BDT  Phys.Rev. D96 (2017) no.3, 035022 HL-LHC (3 ab”-1),

~2.1 Kinematic Cuts + BDT  Preriminary With full BGs.
bbZZ(eemm)
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Conclusion |

1. Higgs pair production can allow us to reconstruct the EWSB potential
and to understand the nature of the EWSB mechanism !

The bbYY channel can offer the appropriate yields and clean(?) signal.

Various multivariate classification methods based on machine learning techniques are used to
consider the enhancement of significance in measuring the Higgs self coupling.

4. We found that the BDT-related methods (+ cut-based analysis) can give the best results compared

with other methods.
5. Presently, we are checking the consistencies of our methods.




Conglusion |l

108 = _
fro™ %Ne find that even for the most promising channel HH — bbvy~ at the HL-LHC with a luminosity of , the significance
is still not high enough to establish the Higgs self-coupling at the SM value (A /A _SM=1).
1.194 ¢

4

With the multivariate classification methods, for example, BDT based on machine learning techniques.

2.10

It may be enough to establish the Higgs self-coupling at the SM value (A/A SM=1) |

Question : Is it possible to establish the general Higgs self-coupling (for instance, A /A _SM=2 ) at the HL-LHC ?
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Question : Is it possnble to establish the general Higgs self-coupling (for instance, A /A SM=2 ) at the HL-LHC ?
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Our event selection cuts and TMVA variables

Sequence| Event Selection Criteria at the HL-LHC
1 Di-photon trigger condition, > 2 isolated photons with Pr > 25 GeV, || < 2.5
2 > 2 isolated photons with Pr > 30 GeV, |n| < 1.37 or 1.52 < |n| < 2.37, AR;, > 0.4
3 > 2 jets identified as b-jets with leading(subleading) Pr > 40(30) GeV, |n| < 2.4
4 Events are required to contain < 5 jets with Pr > 30 GeV within |n| < 2.5
5 No isolated leptons with Pr > 25 GeV, |n| < 2.5
4 6 04 <ARy; <20,04< AR, <20 .
7 122 < M., /GeV < 128 and 100 < M,;/GeV < 150 -[My Va rl a b I e S
8 P} > 80 GeV, P¥ > 80 GeV
\




A dependency with BDT
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A dependency with MLP
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Machine Learning (ML)

Machme learning is a subset of art|f|C|aI mtelllgence in the field of computer

without being explicitly programmed.
Supervised Learning Data With label

Unsupervised Learning Data Without label

Reinforcement Learning |

h oL, I il k.r




Higgs pair productions

Gluon Fusion
\“H « ----H

Top associated productions
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Why Higgs pair production so difficult ?
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Search channel for Higgs pair production

bbbb ~33 1959 Huge hadronic BG
bbWW ~25 30000 Huge ttbar BG
bbtt ~7.3 9000

WWWW ~4.3 5200

bbYY ~0.27 5200

bbZZ(eemm) ~0.015 19



TMVA methods

Rectangular cut optimization (binary splits, Sec. 8.1).

Projective likelihood estimation (Sec. 8.2).

Multi-dimensional likelihood estimation (PDE range-search { Sec. 8.3, PDE-Foam { Sec. 8.4,

and k-NN { Sec. 8.5).

Linear and nonlinear discriminant analysis (H-Matrix { Sec. 8.6, Fisher { Sec. 8.7, LD { Sec. 8.8, FDA { Sec. 8.9).
Articial neural networks (three different multilayer perceptron implementations { Sec. 8.10).

Support vector machine (Sec. 8.11).

Boosted/bagged decision trees (Sec. 8.12).

Predictive learning via rule ensembles (RuleFit, Sec. 8.13).

A generic boost classier allowing one to boost any of the above classiers (Sec. 9).

A generic category classier allowing one to split the training data into disjoint categories with independent
MVAs.




// --- Cut optimisation

Use["Cuts"] =1;
Use["CutsD"] =1;
Use["CutsPCA"] =0;
Use["CutsGA"] =0;
Use["CutsSA"] =0;
//

// --- 1-dimensional likelihood ("naive Bayes estimator")

Use["Likelihood"] =1;

Use["LikelihoodD"] =0; //the "D" extension indicates decorrelated input variables (see option strings)
Use["LikelihoodPCA"] =1;//the "PCA" extension indicates PCA-transformed input variables (see option strings)
Use["LikelihoodKDE"] =0;

Use["LikelihoodMIX"] =0;

//

// --- Mutidimensional likelihood and Nearest-Neighbour methods
Use["PDERS"] =1,

Use["PDERSD"] =0;

Use["PDERSPCA"] =0;

Use["PDEFoam"] =1;

Use["PDEFoamBoost"] =0; // uses generalised MVA method boosting
Use["KNN"] =1; // k-nearest neighbour method

//

// --- Linear Discriminant Analysis

Use["LD"] = 1; // Linear Discriminant identical to Fisher
Use["Fisher"] =0;

Use["FisherG"] =0;

Use["BoostedFisher"] =0; // uses generalised MVA method boosting
Use["HMatrix"] =0;

//




// --- Function Discriminant analysis

Use["FDA_GA"] =1; // minimisation of user-defined function using Genetics Algorithm
Use["FDA_SA"] =0;

Use["FDA_MC"] = 0;

Use["FDA_MT"] =0;

Use["FDA_GAMT"] =0;

Use["FDA_MCMT"] =0;

//

// --- Neural Networks (all are feed-forward Multilayer Perceptrons)
Use["MLP"] =0; // Recommended ANN

Use["MLPBFGS"] = 0; // Recommended ANN with optional training method
Use["MLPBNN"] =1; // Recommended ANN with BFGS training method and bayesian regulator
Use["CFMIpANN"] =0; // Depreciated ANN from ALEPH

Use["TMIpANN"] =0; // ROOT's own ANN

//

// --- Support Vector Machine

Use["SVM"] =1;

//

// --- Boosted Decision Trees

Use["BDT"] =1; // uses Adaptive Boost

Use["BDTG"] = 0; // uses Gradient Boost

Use["BDTB"] =0; // uses Bagging

Use["BDTD"] =0; // decorrelation + Adaptive Boost

Use["BDTF"] =0; // allow usage of fisher discriminant for node splitting
//

// --- Friedman's RuleFit method, ie, an optimised series of cuts ("rules")
Use["RuleFit"] =1;
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