Learning from Higgs Physics at Future Higgs Factories

Shufang Su • U. of Arizona

ICHEP-2018 July 5, 2018 J. Gu, H. Li, Z. Liu, W. Su, 1709.06103 N. Chen, T. Han, SS, W. Su, Y. Wu, work in progress H. Li, SS, W. Su, work in progress

S. Su

Outline

- Higgs precision measurements
- Global fit framework
- Perturbative models
 - SM with a real singlet extension (skip in this talk)
 - 2HDM (tree + loop, Higgs + Zpole)
 - MSSM (skip in this talk)
- Strong dynamics models (skip in this talk)
- Complementarity with direct search @ 100 pp
- Conclusion

Higgs Precision Measurements

LHC: 14 TeV, 300 fb⁻¹, 3000 fb⁻¹

$\Delta \mu / \mu$	300 fb ⁻¹		3000 fb ⁻¹	
	All unc.	No theory unc.	All unc.	No theory unc.
$H \rightarrow \gamma \gamma \text{ (comb.)}$	0.13	0.09	0.09	0.04
(0j)	0.19	0.12	0.16	0.05
(1j)	0.27	0.14	0.23	0.05
(VBF-like)	0.47	0.43	0.22	0.15
(WH-like)	0.48	0.48	0.19	0.17
(ZH-like)	0.85	0.85	0.28	0.27
(<i>ttH</i> -like)	0.38	0.36	0.17	0.12
$H \rightarrow ZZ \text{ (comb.)}$	0.11	0.07	0.09	0.04
(VH-like)	0.35	0.34	0.13	0.12
(<i>ttH</i> -like)	0.49	0.48	0.20	0.16
(VBF-like)	0.36	0.33	0.21	0.16
(ggF-like)	0.12	0.07	0.11	0.04
$H \rightarrow WW$ (comb.)	0.13	0.08	0.11	0.05
(0j)	0.18	0.09	0.16	0.05
(1j)	0.30	0.18	0.26	0.10
(VBF-like)	0.21	0.20	0.15	0.09
$H \rightarrow Z\gamma$ (incl.)	0.46	0.44	0.30	0.27
$H \rightarrow b\bar{b} \text{ (comb.)}$	0.26	0.26	0.14	0.12
(WH-like)	0.57	0.56	0.37	0.36
(ZH-like)	0.29	0.29	0.14	0.13
$H \rightarrow \tau \tau \text{ (VBF-like)}$	0.21	0.18	0.19	0.15
$H \rightarrow \mu\mu \text{ (comb.)}$	0.39	0.38	0.16	0.12
(incl.)	0.47	0.45	0 4 18	0.14
(<i>ttH</i> -like)	0.74	0.72	0.27	0.23

Higgs Precision Measurements

CEPC / FCC / ILC

collider	CEPC	FCC-ee	ILC					
\sqrt{s}	$240{ m GeV}$	$240{ m GeV}$	$250{ m GeV}$	$350{ m GeV}$		$500{ m GeV}$		
$\int \mathcal{L} dt$	5 ab^{-1}	5 ab^{-1}	2 ab^{-1}	200 fb^{-1}		4 ab^{-1}		
production	Zh	Zh	Zh	Zh	$ u \overline{ u} h $	Zh	$ u \bar{ u} h $	$t\bar{t}h$
$\Delta \sigma / \sigma$	0.51%	0.57%	0.71%	2.1%	-	1.06	-	-
decay	$\Delta(\sigma \cdot BR)/(\sigma \cdot BR)$							
$h \to b\bar{b}$	0.28%	0.28%	0.42%	1.67%	1.67%	0.64%	0.25%	9.9%
$h \to c\bar{c}$	2.2%	1.7%	2.9%	12.7%	16.7%	4.5%	2.2%	-
$h \to gg$	1.6%	1.98%	2.5%	9.4%	11.0%	3.9%	1.5%	-
$h \to WW^*$	1.5%	1.27%	1.1%	8.7%	6.4%	3.3%	0.85%	-
$h \to \tau^+ \tau^-$	1.2%	0.99%	2.3%	4.5%	24.4%	1.9%	3.2%	-
$h \to ZZ^*$	4.3%	4.4%	6.7%	28.3%	21.8%	8.8%	2.9%	-
$h \to \gamma \gamma$	9.0%	4.2%	12.0%	43.7%	50.1%	12.0%	6.7%	-
$h \to \mu^+ \mu^-$	17%	18.4%	25.5%	97.6%	179.8%	31.1%	25.5%	-
$(\nu\bar{\nu})h \to b\bar{b}$	2.8%	3.1%	3.7%	-	-	-	-	-

S. Su CEPC-preCDR, TLEP Design Study Working Group, ILC Operating Scenarios.

Higgs Precision Measurements

CEPC / FCC / ILC

collider	CEPC	FCC-ee	CC-ee ILC					
\sqrt{s}	240 GeV	240 GeV	$250{ m GeV}$	$350\mathrm{GeV}$		$500{ m GeV}$		
$\int \mathcal{L} dt$	5 ab^{-1}	5 ab^{-1}	2 ab^{-1}	200 fb^{-1}				
production	Zh	Zh	Zh	Zh	$ u \overline{ u} h $	Zh	$ u \overline{ u} h $	$t\bar{t}h$
$\Delta\sigma/\sigma$	0.51%	0.57%	0.71%	2.1%	_	1.06	_	-
decay		$\Delta(\sigma \cdot BR)/(\sigma \cdot BR)$						
$h \rightarrow b \bar{b}$	0.28%	0.28%	0.42%	1.67%	1.67%	0.64%	0.25%	9.9%
$h \to c \bar{c}$	2.2%	1.7%	2.9%	12.7%	16.7%	4.5%	2.2%	-
$h \to gg$	1.6%	1.98%	2.5%	9.4%	11.0%	3.9%	1.5%	-
$h \to WW^*$	1.5%	1.27%	1.1%	8.7%	6.4%	3.3%	0.85%	-
$h \to \tau^+ \tau^-$	1.2%	0.99%	2.3%	4.5%	24.4%	1.9%	3.2%	-
$h \to ZZ^*$	4.3%	4.4%	6.7%	28.3%	21.8%	8.8%	2.9%	-
$h ightarrow \gamma \gamma$	9.0%	4.2%	12.0%	43.7%	50.1%	12.0%	6.7%	-
$h \to \mu^+ \mu^-$	17%	18.4%	25.5%	97.6%	179.8%	31.1%	25.5%	-
$(\nu\bar{\nu})h \to b\bar{b}$	2.8%	3.1%	3.7%	-	-	-	-	-

S. Su CEPC-preCDR, TLEP Design Study Working Group, ILC Operating Scenarios.

Kappa framework and EFT Framework

S. Su

Kappa Framework and EFT Framework

limitations of model-independent approaches

- large level of degeneracy parameter space for specific model much smaller
- correlation matrix often not provided
 over conservative estimation when not include correlation
- assumptions and simplifications may not be valid for a particular model

Perturbative Models

- SM with a real singlet extension (skip)
 2HDM (Type I, II, L, F)
- MSSM (skip)

2HDM in one slide

• Two Higgs Doublet Model (CP-conserving)

$$\Phi_{i} = \begin{pmatrix} \phi_{i}^{+} \\ (v_{i} + \phi_{i}^{0} + iG_{i})/\sqrt{2} \end{pmatrix}$$

$$v_{u}^{2} + v_{d}^{2} = v^{2} = (246 \text{GeV})^{2} \\ \tan \beta = v_{u}/v_{d}$$

$$\begin{pmatrix} H^{0} \\ h^{0} \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \phi_{1}^{0} \\ \phi_{2}^{0} \end{pmatrix}, \quad \begin{array}{l} A = -G_{1} \sin \beta + G_{2} \cos \beta \\ H^{\pm} = -\phi_{1}^{\pm} \sin \beta + \phi_{2}^{\pm} \cos \beta \end{pmatrix}$$

after EWSB, 5 physical Higgses CP-even Higgses: h⁰, H⁰ , CP-odd Higgs: A⁰, Charged Higgses: H[±]

• h⁰/H⁰ VV coupling
$$g_{H^0VV} = \frac{m_V^2}{v} \cos(\beta - \alpha), \quad g_{h^0VV} = \frac{m_V^2}{v} \sin(\beta - \alpha).$$

alignment limit: $\cos(\beta - \alpha) = 0$, h⁰ is the SM Higgs with SM couplings. S. Su 11

2HDM parameters

	Φ 1	ф2
Type I	u,d,l	
Type II	u	d,l
lepton-specific	u,d	I
flipped	u,l	d

Model	κ_V	κ_u	κ_d	κ_ℓ
2HDM-I	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$\cos lpha / \sin eta$	$\cos \alpha / \sin \beta$
2HDM-II	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	$-\sin \alpha / \cos \beta$
2HDM-L	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$\cos lpha / \sin eta$	$-\sin \alpha / \cos \beta$
2HDM-F	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	$\cos \alpha / \sin \beta$
	-			

• parameters (CP-conserving, flavor limit, Z₂ symmetry)

Tree-level 2HDM fit

2HDM, LHC/FCC fit

2HDM: Tree + Loop

N. Chen, T. Han, SS, W. Su, Y. Wu, work in progress

2HDM: Loop in the Alignment Limit

2HDM: Tree + Loop

N. Chen, T. Han, SS, W. Su, Y. Wu, work in progress

Direct Search of Heavy Higgses @ 100 pp

2HDM: non-degenerate

$$\Delta m_a = m_A - m_H, \ \Delta m_c = m_{H^{\pm}} - m_H$$

S. Su

Complementary to Zpole precision

18

Conclusion

- Higgs factory reach impressive precision
- Kappa-scheme/EFT scheme/model specific fit
- indirect constraints on new physics models
- complementary to Zpole precision program
- complementary to direct search @ 100 TeV pp

Conclusion

An exciting journey ahead of us!