Learning from Higgs Physics

at Future Higgs Factories

Shufang Su • U. of Arizona

ICHEP-2018
July 5, 2018
S. Su
J. Gu, H. Li, Z. Liu, W. Su, 1709.06103
N. Chen, T. Han, SS, W. Su, Y. Wu, work in progress
H. Li, SS, W. Su, work in progress

Outline

Higgs precision measurements
Global fit framework
© Perturbative models

- SM with a real singlet extension (skip in this talk)
- 2HDM (tree + loop, Higgs + Zpole)
- MSSM (skip in this talk)
\& Strong dynamics models (skip in this talk)
Complementarity with direct search @ 100 pp
Conclusion

Higgs Precision Measurements

LHC: 7+8 TeV

CERN-PH-EP-2015-125
3

Higgs Precision Measurements

ATLAS Simulation Preliminary

$\sqrt{s}=14 \mathrm{TeV}: \int L d t=300 \mathrm{fb}^{-1} ; \int L d t=3000 \mathrm{fb}^{-1}$

$$
\begin{array}{lll}
0 & 0.2 & 0.4
\end{array}
$$

ATL-PHYS-PUB-2014-016
$\Delta \mu / \mu$

LHC: 14 TeV, $300 \mathrm{fb}^{-1}, 3000 \mathrm{fb}{ }^{-1}$

$\Delta \mu / \mu$	$300 \mathrm{fb}^{-1}$		$3000 \mathrm{fb}^{-1}$	
	All unc.	No theory unc.	All unc.	No theory unc.
$H \rightarrow \gamma \gamma$ (comb.)	0.13	0.09	0.09	0.04
(0j)	0.19	0.12	0.16	0.05
(1j)	0.27	0.14	0.23	0.05
(VBF-like)	0.47	0.43	0.22	0.15
($W H$-like)	0.48	0.48	0.19	0.17
(ZH-like)	0.85	0.85	0.28	0.27
($t t H$-like)	0.38	0.36	0.17	0.12
$H \rightarrow Z Z$ (comb.)	0.11	0.07	0.09	0.04
(VH -like)	0.35	0.34	0.13	0.12
(t H-like)	0.49	0.48	0.20	0.16
(VBF-like)	0.36	0.33	0.21	0.16
(ggF-like)	0.12	0.07	0.11	0.04
$H \rightarrow W W$ (comb.)	0.13	0.08	0.11	0.05
(0j)	0.18	0.09	0.16	0.05
(1j)	0.30	0.18	0.26	0.10
(VBF-like)	0.21	0.20	0.15	0.09
$H \rightarrow Z \gamma$ (incl.)	0.46	0.44	0.30	0.27
$H \rightarrow b \bar{b}$ (comb.)	0.26	0.26	0.14	0.12
($W H$-like)	0.57	0.56	0.37	0.36
(ZH-like)	0.29	0.29	0.14	0.13
$H \rightarrow \tau \tau$ (VBF-like)	0.21	0.18	0.19	0.15
$H \rightarrow \mu \mu$ (comb.)	0.39	0.38	0.16	0.12
(incl.)	0.47	0.45	0418	0.14
(ttH-like)	0.74	0.72	0.27	0.23

Higgs Precision Measurements

CEPC / FCC / ILC

collider	CEPC	FCC-ee	ILC						
\sqrt{s}	240 GeV	240 GeV	250 GeV	350 GeV		500 GeV			
$\int \mathcal{L} d t$	$5 \mathrm{ab}^{-1}$	$5 \mathrm{ab}^{-1}$	$2 \mathrm{ab}^{-1}$	$200 \mathrm{fb}^{-1}$	$4 \mathrm{ab}^{-1}$				
production	$Z h$	$Z h$	$Z h$	$Z h$	$\nu \bar{\nu} h$	$Z h$	$\nu \bar{\nu} h$	$t \bar{t} h$	
$\Delta \sigma / \sigma$	0.51%	0.57%	0.71%	2.1%	-	1.06	-	-	
decay	$\Delta(\sigma \cdot B R) /(\sigma \cdot B R)$								
$h \rightarrow b \bar{b}$	0.28%	0.28%	0.42%	1.67%	1.67%	0.64%	0.25%	9.9%	
$h \rightarrow c \bar{c}$	2.2%	1.7%	2.9%	12.7%	16.7%	4.5%	2.2%	-	
$h \rightarrow g g$	1.6%	1.98%	2.5%	9.4%	11.0%	3.9%	1.5%	-	
$h \rightarrow W W^{*}$	1.5%	1.27%	1.1%	8.7%	6.4%	3.3%	0.85%	-	
$h \rightarrow \tau^{+} \tau^{-}$	1.2%	0.99%	2.3%	4.5%	24.4%	1.9%	3.2%	-	
$h \rightarrow Z Z^{*}$	4.3%	4.4%	6.7%	28.3%	21.8%	8.8%	2.9%	-	
$h \rightarrow \gamma \gamma$	9.0%	4.2%	12.0%	43.7%	50.1%	12.0%	6.7%	-	
$h \rightarrow \mu^{+} \mu^{-}$	17%	18.4%	25.5%	97.6%	179.8%	31.1%	25.5%	-	
$(\nu \bar{\nu}) h \rightarrow b \bar{b}$	2.8%	3.1%	3.7%	-	-	-	-	-	

S. Su CEPC-preCDR, TLEP Design Study Working Group, ILC Operating Scemnarios.

Higgs Precision Measurements

CEPC / FCC / ILC

collider	CEPC	FCC-ee	ILC					
\sqrt{s}	240 GeV	240 GeV	250 GeV	350 GeV		500 GeV		
$\int \mathcal{L} d t$	$5 \mathrm{ab}^{-1}$	$5 \mathrm{ab}^{-1}$	$2 \mathrm{ab}^{-1}$	$200 \mathrm{fb}^{-1}$	$4 \mathrm{ab}^{-1}$			
production	$Z h$	$Z h$	$Z h$	$Z h$	$\nu \bar{\nu} h$	$Z h$	$\nu \bar{\nu} h$	$t \bar{t} h$
$\Delta \sigma / \sigma$	0.51%	0.57%	0.71%	2.1%	-	1.06	-	-
decay		$\Delta(\sigma \cdot B R) /(\sigma \cdot B R)$						
$h \rightarrow b \bar{b}$	0.28%	0.28%	0.42%	1.67%	1.67%	0.64%	0.25%	9.9%
$h \rightarrow c \bar{c}$	2.2%	1.7%	2.9%	12.7%	16.7%	4.5%	2.2%	-
$h \rightarrow g g$	1.6%	1.98%	2.5%	9.4%	11.0%	3.9%	1.5%	-
$h \rightarrow W W^{*}$	1.5%	1.27%	1.1%	8.7%	6.4%	3.3%	0.85%	-
$h \rightarrow \tau^{+} \tau^{-}$	1.2%	0.99%	2.3%	4.5%	24.4%	1.9%	3.2%	-
$h \rightarrow Z Z^{*}$	4.3%	4.4%	6.7%	28.3%	21.8%	8.8%	2.9%	-
$h \rightarrow \gamma \gamma$	9.0%	4.2%	12.0%	43.7%	50.1%	12.0%	6.7%	-
$h \rightarrow \mu^{+} \mu^{-}$	17%	18.4%	25.5%	97.6%	179.8%	31.1%	25.5%	-
$(\nu \bar{\nu}) h \rightarrow b \bar{b}$	2.8%	3.1%	3.7%	-	-	-	-	-

S. Su CEPC-preCDR, TLEP Design Study Working Group, ILC Operating Scennarios.

Kappa framework and EFT Framework

Two model-independent approaches

kappa framework

$$
\kappa_{f}=\frac{g(h f f)}{g(h f f ; \mathrm{SM})}, \kappa_{V}=\frac{g(h V V)}{g(h f f ; \mathrm{SM})} \quad \delta c_{Z}, \quad c_{Z Z}, \quad c_{Z \square}, \quad c_{\gamma \gamma}, \quad c_{Z \gamma}, \quad c_{g g}, \quad \delta y_{u}, \quad \delta y_{d}, \quad \delta y_{e}, \quad \lambda_{Z}
$$

EFT framework

1704.02333

New Physics Implication

Kappa Framework and EFT Framework

limitations of model-independent approaches

- large level of degeneracy
parameter space for specific model much smaller
- correlation matrix often not provided
over conservative estimation when not include correlation
- assumptions and simplifications
may not be valid for a particular model

New Physics Implication

New Physics Implication

New Physics Implication

Perturbative Models

- SM with a real singlet extension (skip)
- 2HDM (Type I, II, L, F)
- MSSM (skip)

2HDM in one slide

- Two Higgs Doublet Model (CP-conserving)

$$
\Phi_{i}=\binom{\phi_{i}^{+}}{\left(v_{i}+\phi_{i}^{0}+i G_{i}\right) / \sqrt{2}}
$$

$$
\begin{gathered}
v_{u}^{2}+v_{d}^{2}=v^{2}=(246 \mathrm{GeV})^{2} \\
\tan \beta=v_{u} / v_{d}
\end{gathered}
$$

$$
\binom{H^{0}}{h^{0}}=\left(\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha \cos \alpha
\end{array}\right)\binom{\phi_{1}^{0}}{\phi_{2}^{0}}, \quad \begin{gathered}
A=-G_{1} \sin \beta+G_{2} \cos \beta \\
H^{ \pm}=-\phi_{1}^{ \pm} \sin \beta+\phi_{2}^{ \pm} \cos \beta
\end{gathered}
$$

after EWSB, 5 physical Higgses

 CP-even Higgses: $\mathrm{h}^{0}, \mathrm{H}^{0}, \mathrm{CP}$-odd Higgs: A^{0}, Charged Higgses: $\mathrm{H}^{ \pm}$- $\mathbf{h}^{0} / \mathbf{H}^{0}$ VV coupling $g_{H^{0} V V}=\frac{m_{V}^{2}}{v} \cos (\beta-\alpha), \quad g_{h^{0} V V}=\frac{m_{V}^{2}}{v} \sin (\beta-\alpha)$.
alignment limit: $\cos (\beta-\alpha)=0, h^{0}$ is the SM Higgs with SM couplings. S. Su

2HDM parameters

	ϕ_{1}	ϕ_{2}
Type I	u,d,I	
Type II	u	d,I
lepton-specific	u,d	I
flipped	u,l	d

Model	κ_{V}	κ_{u}	κ_{d}	κ_{ℓ}
2HDM-I	$\sin (\beta-\alpha)$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$
2HDM-II	$\sin (\beta-\alpha)$	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	$-\sin \alpha / \cos \beta$
2HDM-L	$\sin (\beta-\alpha)$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$
2HDM-F	$\sin (\beta-\alpha)$	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	$\cos \alpha / \sin \beta$

o parameters (CP-conserving, flavor limit, Z_{2} symmetry)

$\underbrace{m_{11}^{2}, m_{22}^{2}, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}}_{\text {soft } \mathbf{Z 2} \text { breaking: } \mathbf{m}_{12^{2}}} \rightarrow \underbrace{246 \mathrm{GeV} 125 \mathrm{GeV}}_{$| $\tan \beta, \cos (\beta-\alpha),$ |
| :--- |
| control tree level $\mathbf{h}^{0} \text { couplings }$ |$}$

Tree-level 2HDM fit

2HDM, LHC/FCC fit

2HDM: Tree + Loop

N. Chen, T. Han, SS, W. Su, Y. Wu, work in progress

2HDM: Loop in the Alignment Limit

- Type II

$$
\kappa_{\text {loop }}^{2 \mathrm{HDM}} \equiv \frac{g_{\text {tree }}^{2 \mathrm{HDM}}+g_{\text {loop }}^{2 \mathrm{HDM}}}{g_{\text {tree }}^{\mathrm{SM}}+g_{\mathrm{loop}}^{\mathrm{SM}}}
$$

$$
\left.\kappa_{1-\text { loop }}^{2 \mathrm{HDM}}\right|_{\text {alignment }}=1+\Delta \kappa_{1-\text { loop }}^{2 \mathrm{HDM}}
$$

2HDM: Tree + Loop

N. Chen, T. Han, SS, W. Su, Y. Wu, work in progress

Direct Search of Heavy Higgses @ 100 pp

S. Su Craig et. al., 1605.08744

Exotic Decay

2HDM: non-degenerate

$$
\Delta m_{a}=m_{A}-m_{H}, \Delta m_{c}=m_{H^{ \pm}}-m_{H}
$$

S. Su

Complementary to Zpole precision

Conclusion

\& Higgs factory reach impressive precision

* Kappa-scheme/EFT scheme/model specific fit
\% indirect constraints on new physics models
\& complementary to Zpole precision program
- complementary to direct search @ 100 TeV pp

Conclusion

LHC

Lepton Collider

100 TeV pp

An exciting journey ahead of us!

