Prospects for measuring Higgs triscalar coupling at the HL-LHC and HL-100 TeV hadron collider

Chih-Ting Lu (NTHU)

Collaborators: Prof. Kingman Cheung, Prof. Jae Sik Lee,

Dr. Jubin Park, Dr. Jung Chang

Ref: JHEP 1508 (2015) 133

1804.07130

Contents

- * 1. Motivations
- * 2. Effective Lagrangian
- 3. Outline of simulations and event selections
- * 4. Essence of analysis results at the HL-LHC and HL-100 TeV hadron collider
- * 5. Conclusions

Motivations

- Self-coupling of the Higgs boson is a crucial property which depends on the dynamics of the EWSB sector.
- * One of the probes of Higgs self-coupling is the Higgs-boson-pair production at the LHC.
- * In this work, we perform the most up-to-date comprehensive signal-background analysis for Higgs-pair production through gluon fusion and the $\mu H \to b \bar{b} \gamma \gamma$ channel at the HL-LHC and HL-100 TeV hadron collider, with the goal of probing the self-coupling λ_{3H} of the Higgs boson.

Effective Lagranian

$$-\mathcal{L} = \frac{1}{3!} \left(\frac{3M_H^2}{v} \right) \lambda_{3H} H^3 + g_t^S \frac{m_t}{v} \bar{t} t H$$

In the SM, $\lambda_{3H} = g_t^S = 1$.

$$g(p_1)g(p_2) \rightarrow H(p_3)H(p_4)$$

$$\frac{d\hat{\sigma}(gg \to HH)}{d\hat{t}} = \frac{G_F^2 \alpha_s^2}{512(2\pi)^3} \left[\left| \lambda_{3H} g_t^S D(\hat{s}) F_{\triangle}^S + (g_t^S)^2 F_{\square}^{SS} \right|^2 + \left| (g_t^S)^2 G_{\square}^{SS} \right|^2 \right]$$

Effective Lagranian

where

$$D(\hat{s}) = \frac{3M_H^2}{\hat{s} - M_H^2 + iM_H\Gamma_H}$$

and $\hat{s} = (p_1 + p_2)^2$, $\hat{t} = (p_1 - p_3)^2$, and $\hat{u} = (p_2 - p_3)^2$ with $p_1 + p_2 = p_3 + p_4$.

In the heavy quark limit, one may have

$$F_{\triangle}^{S} = +\frac{2}{3} + \mathcal{O}(\hat{s}/m_Q^2), \quad F_{\square}^{SS} = -\frac{2}{3} + \mathcal{O}(\hat{s}/m_Q^2), \quad G_{\square}^{SS} = \mathcal{O}(\hat{s}/m_Q^2)$$

leading to large cancellation between the triangle and box diagrams.

Effective Lagranian

The production cross section normalized to the corresponding SM cross section, with or without cuts, can be parameterized as follows:

$$\frac{\sigma^{\text{LO}}(gg \to HH)}{\sigma^{\text{LO}}_{\text{SM}}(gg \to HH)} = c_1(s) \,\lambda_{3H}^2 \,(g_t^S)^2 + c_2(s) \,\lambda_{3H} \,(g_t^S)^3 + c_3(s) \,(g_t^S)^4 \tag{5}$$

where the numerical coefficients $c_{1,2,3}(s)$ depend on s and experimental selection cuts. Numerically, $c_1(s)$, $c_2(s)$, $c_3(s)$ are 0.263, -1.310, 2.047 at 14 TeV and 0.208, -1.108, 1.900 at 100 TeV [11]. Upon our normalization, the ratio should be equal to 1 when $g_t^S = \lambda_{3H} = 1$, or $c_1(s) + c_2(s) + c_3(s) = 1$. The coefficients $c_1(s)$ and $c_3(s)$ are for the contributions from the triangle and box diagrams, respectively, and the coefficient $c_2(s)$ for the interference between them. Once we have the coefficients c_i the cross sections can be easily obtained for any combinations of couplings.

Outline of simulations and event selections

- * Our goal is to disentangle the effects of trilinear Higgs coupling, which is present in the triangle diagram, in Higgspair production.
- * We vary the value for the trilinear coupling λ_{3H} between -5 and 10 to visualize the effects of λ_{3H} .
- The backgrounds include
 - single-Higgs associated production, such as ggH, $t\bar{t}H$, ZH, $b\bar{b}H$ followed by $H \to \gamma\gamma$,
 - non-resonant backgrounds and jet-fake backgrounds, such as $b\bar{b}\gamma\gamma$, $c\bar{c}\gamma\gamma$, $jj\gamma\gamma$, $b\bar{b}j\gamma$, $c\bar{c}j\gamma$, $b\bar{b}jj$, and $Z\gamma\gamma \to b\bar{b}\gamma\gamma$,
 - $t\bar{t}(\geq 1 \text{ lepton})$ and $t\bar{t}\gamma(\geq 1 \text{ lepton})$ backgrounds.

	Signal						
	Signal process		Generator/Parton Shower	$\sigma \cdot BR$ [fb]	Order	PDF used	
	in QCD						
	gg o HH o bi	· δγγ [15]	MG5_aMC@NLO/PYTHIA8	0.119	NNLO	NNPDF2.3LO	
	+NNLL						
			Backgrounds				
	Background(BG)	Process	Generator/Parton Shower	$\sigma \cdot BR$ [fb]	Order	PDF used	
					in QCD $$		
		$ggH(\to\gamma\gamma)$	POWHEG — BOX/PYTHIA6	1.20×10^2	NNNLO	CT10	
	Single-Higgs associated BG [15]	$t\bar{t}H(\to\gamma\gamma)$	PYTHIA8/PYTHIA8	1.37	NLO		
	associated BG [15]	$ZH(\to\gamma\gamma)$	PYTHIA8/PYTHIA8	2.24	NLO		
		$b\bar{b}H(\to\gamma\gamma)$	PYTHIA8/PYTHIA8	1.26	NLO		
		$b\bar{b}\gamma\gamma$	MG5_aMC@NLO/PYTHIA8	1.40×10^2	LO	CTEQ6L1	
		$c\bar{c}\gamma\gamma$	MG5_aMC@NLO/PYTHIA8	1.14×10^3	LO		
		$jj\gamma\gamma$	MG5_aMC@NLO/PYTHIA8	1.62×10^{4}	IO		
	Non-resonant BG	$b\bar{b}j\gamma$	MG5_aMC@NLO/PYTHIA8	3.67×10^5	LO		
		$c\bar{c}j\gamma$	MG5_aMC@NLO/PYTHIA8	1.05×10^6	LO		
		$b\bar{b}jj$	MG5_aMC@NLO/PYTHIA8	4.34×10^8	ro		
		$Z(\to b\bar b)\gamma\gamma$	MG5_aMC@NLO/PYTHIA8	5.17	LO		
	$t\bar{t}$ and $t\bar{t}\gamma$ BG	$t\bar{t}$ [18]	${\tt POWHEG-BOX/PYTHIA8}$	5.30×10^{5}	NNLO	CT10	
	tt and tt/y DG				+NNLL		
	$(\geq 1 \text{ lepton})$	$t\bar{t}\gamma$ [19]	MG5_aMC@NLO/PYTHIA8	1.60×10^3	NLO	CTEQ6L1	

TABLE III. The main fake processes and the corresponding rates in each sample of non-resonant and $t\bar{t}(\gamma)$ backgrounds. We recall that $P_{j\to\gamma}=5\times 10^{-4}$ and $P_{c\to\gamma}=2\%/5\%$ in the barrel/endcap calorimeter region. For c_s quarks produced during showering in the $jj\gamma\gamma$ sample, we use $P_{c_s\to b}=1/8$ as in Ref. [26]. Otherwise the P_T and η dependence of $P_{c\to b}$ is fully considered as explained in the text.

Background(BG)	Process	Fake Process	Fake rate
	$bar{b}\gamma\gamma$	N/A	N/A
LHC-14	$c\bar{c}\gamma\gamma$	$c \to b, \ \bar{c} \to \bar{b}$	$(P_{c \to b})^2$
Tue	$jj\gamma\gamma$	$c_s \to b, \ \bar{c_s} \to \bar{b}$	$(P_{c_s \to b})^2$
Non-resonant	$bar{b}j\gamma$	$j o \gamma$	5×10^{-4}
BG	$car{c}j\gamma$	$c \to b, \bar{c} \to \bar{b}, j \to \gamma$	$(P_{c\rightarrow b})^2 \cdot (5 \times 10^{-4})$
	$bar{b}jj$	$j \to \gamma, j \to \gamma$	$(5 \times 10^{-4})^2$
	$Z(\to b\bar b)\gamma\gamma$	N/A	N/A
47	Leptonic decay	$e \rightarrow \gamma, \ e \rightarrow \gamma$	$(0.02)^2/0.02 \cdot 0.05/(0.05)^2$
$tar{t}$	Semi-leptonic decay	$e \rightarrow \gamma, j \rightarrow \gamma$	$(0.02) \cdot 5 \times 10^{-4} / (0.05) \cdot 5 \times 10^{-4}$
tī.	Leptonic decay	$e o \gamma$	0.02/0.05
$tt\gamma$	Semi-leptonic	$e o \gamma$	0.02/0.05

Outline of simulations and event selections

TABLE IV. Sequence of event selection criteria at the HL-LHC applied in this analysis.

Sequence	Event Selection Criteria at the HL-LHC
1	Di-photon trigger condition, ≥ 2 isolated photons with $P_T > 25$ GeV, $ \eta < 2.5$
2	\geq 2 isolated photons with $P_T >$ 30 GeV, $ \eta < 1.37$ or $1.52 < \eta < 2.37$, $\Delta R_{j\gamma} > 0.4$
3	≥ 2 jets identified as b-jets with leading (subleading) $P_T > 40(30)$ GeV, $ \eta < 2.4$
4	Events are required to contain ≤ 5 jets with $P_T > 30$ GeV within $ \eta < 2.5$
5	No isolated leptons with $P_T > 25$ GeV, $ \eta < 2.5$
6	$0.4 < \Delta R_{bar{b}} < 2.0, \ 0.4 < \Delta R_{\gamma\gamma} < 2.0$
7	$122 < M_{\gamma\gamma}/{\rm GeV} < 128$ and $100 < M_{b\bar{b}}/{\rm GeV} < 150$
8	$P_T^{\gamma\gamma} > 80 \text{ GeV}, P_T^{b\bar{b}} > 80 \text{ GeV}$

Expected yields (3000 fb^{-1})	Total	Barrel-barrel	Other	Ratio (O/B)
Samples			(End-cap)	
$H(b ar b) H(\gamma \gamma), \lambda_{3H}=-4$	77.14	57.03	20.11	0.35
$H(b ar{b}) H(\gamma \gamma), \lambda_{3H}=0$	19.50	14.33	5.17	0.36
$H(b\bar{b})H(\gamma\gamma), \lambda_{3H} = 1$	11.42	8.53	2.89	0.34
$H(b\bar{b})H(\gamma\gamma),\lambda_{3H}=2$	6.82	5.14	1.68	0.33
$H(b\bar{b})H(\gamma\gamma),\lambda_{3H}=6$	11.03	7.91	3.12	0.39
$H(bar{b})H(\gamma\gamma),\lambda_{3H}=10$	57.46	41.94	15.52	0.37
$gg H(\gamma \gamma)$	6.60	4.50	2.10	0.47
$t\bar{t}H(\gamma\gamma)$	13.21	9.82	3.39	0.35
$ZH(\gamma \gamma)$	3.62	2.44	1.18	0.48
$b\bar{b}H(\gamma\gamma)$	0.15	0.11	0.04	0.40
$b\bar{b}\gamma\gamma$	18.86	11.15	7.71	0.69
$c\bar{c}\gamma\gamma$	7.53	4.79	2.74	0.57
$jj\gamma\gamma$	3.34	1.59	1.75	1.10
$b \bar{b} j \gamma$	18.77	10.40	8.37	0.80
$c\bar{c}j\gamma$	5.52	3.94	1.58	0.40
$bar{b}jj$	5.54	3.81	1.73	0.45
$Z(b\bar{b})\gamma\gamma$	0.90	0.54	0.36	0.67
$t\bar{t} \ (\geq 1 \text{ leptons})$	4.98	3.04	1.94	0.64
$t\bar{t}\gamma \ (\geq 1 \text{ leptons})$	3.61	2.29	1.32	0.58
Total Background	92.63	58.42	34.21	0.59
Significance Z	1.163	1.090	0.487	
Combined significance		1.19	4	1.194

Essence of analysis results at the HL-LHC

 $Z = \sqrt{2 \cdot \left[((s+b) \cdot \ln(1+s/b) - s) \right]}$

where s and b represent the numbers of signal and background events, respectively.

Essence of analysis results at the HL-LHC

FIG. 7. **HL-LHC**: Required luminosity for 95% CL sensitivity at the 14 TeV HL-LHC versus λ_{3H} . Here we assume that the top-Yukawa coupling takes the SM value.

TABLE VII. The same as in Table I but for a 100 TeV hadron collider. In the row for $b\bar{b}H(\to \gamma\gamma)$,

	5FS stands for the	o-navor scheme.					
			Signal				
	Signal p	rocess	Generator/Parton Shower	$\sigma \cdot BR$ [fb]	Order	PDF used	
					in QCD $$		
-4	$gg \rightarrow HH -$	$b\bar{b}\gamma\gamma$ [16]	MG5_aMC@NLO/PYTHIA8	4.62	NNLO	NNPDF2.3	
400	'ahii'				+NNLL		
1007 hadron	COLLIE		Backgrounds				
padron	Background(BG)	Process	Generator/Parton Shower	$\sigma \cdot BR$ [fb]	Order	PDF use	
110.					in QCD		
		$ggH(\rightarrow \gamma\gamma)$ [16]	POWHEG - BOX/PYTHIA8	1.82×10^3	NNNLO	CT10	
	Single-Higgs associated BG	$t\bar{t}H(o\gamma\gamma)$ [16]	PYTHIA8/PYTHIA8	7.29×10^{1}	NLO		
	associated BG	$ZH(\to \gamma\gamma)$ [16]	PYTHIA8/PYTHIA8	2.54×10^{1}	NNLO		
		$b\bar{b}H(o\gamma\gamma)$ [30]	PYTHIA8/PYTHIA8	1.96×10^{1}	NNLO(5FS)		
		$b\bar{b}\gamma\gamma$	MG5_aMC@NLO/PYTHIA8	4.93×10^3	LO	CTEQ6L:	
		$c\bar{c}\gamma\gamma$	MG5_aMC@NLO/PYTHIA8	4.54×10^4	LO		
		$jj\gamma\gamma$	MG5_aMC@NLO/PYTHIA8	5.38×10^5	LO		
	Non-resonant BG	$b\bar{b}j\gamma$	MG5_aMC@NLO/PYTHIA8	1.44×10^7	LO		
		$c\bar{c}j\gamma$	MG5_aMC@NLO/PYTHIA8	4.20×10^7	LO		
		$bar{b}jj$	MG5_aMC@NLO/PYTHIA8	1.60×10^{10}	LO		
		$Z(\to b\bar b)\gamma\gamma$	MG5_aMC@NLO/PYTHIA8	9.53×10^{1}	LO		
	tī and tīs: DC [tel	$t\bar{t}$	MG5_aMC@NLO/PYTHIA8	1.76×10^7	NLO	CT10	
	$t\bar{t}$ and $t\bar{t}\gamma$ BG [16] (≥ 1 lepton)	$t\bar{t}\gamma$	MG5_aMC@NLO/PYTHIA8	4.18×10^{4}	NLO	CTEQ6L:	

TABLE IX. The main fake processes and the corresponding faking rates in each sample of non-resonant and $t\bar{t}(\gamma)$ backgrounds. We recall that $P_{j\to\gamma}=1.35\times 10^{-3},\, P_{c\to b}=P_{c_s\to b}=0.1$ [16] and $P_{c\to\gamma}=2\%/5\%$ in the barrel/endcap calorimeter region.

Background(BG)		Fake Process	Fake rate
100TeV	$b ar b \gamma \gamma$	N/A	N/A
10010	lider cāyy	$c \to b, \bar{c} \to \bar{b}$	$(0.1)^2$
hadron	$jj\gamma\gamma$	$c_s \to b, \bar{c}_s \to \bar{b}$	$(0.1)^2$
Non-resonant	$bar{b}j\gamma$	$j o \gamma$	1.35×10^{-3}
BG	$car{c}j\gamma$	$c \to b, \ \bar{c} \to \bar{b}, \ j \to \gamma$	$(0.1)^2 \cdot (1.35 \times 10^{-3})$
	$bar{b}jj$	$j \rightarrow \gamma, j \rightarrow \gamma$	$(1.35 \times 10^{-3})^2$
	$Z(\to b\bar b)\gamma\gamma$	N/A	N/A
$t\bar{t}$	Leptonic decay	$e \rightarrow \gamma, e \rightarrow \gamma$	$(0.02)^2/0.02 \cdot 0.05/(0.05)^2$
tt .	Semi-leptonic decay	$e \to \gamma, j \to \gamma$	$(0.02) \cdot 1.35 \times 10^{-3} / (0.05) \cdot 1.35 \times 10^{-3}$
tī.	Leptonic decay	$e \rightarrow \gamma$	0.02/0.05
$tar{t}\gamma$	Semi-leptonic	$e \rightarrow \gamma$	0.02/0.05

Outline of simulations and event selections

TABLE X. Sequence of event selection criteria at the HL-100 TeV hadron collider applied in this analysis.

Sequence	Event Selection Criteria at the HL-100 TeV hadron collider
1	Di-photon trigger condition, ≥ 2 isolated photons with $P_T > 30$ GeV, $ \eta < 5$
2	≥ 2 isolated photons with $P_T > 40$ GeV, $ \eta < 3$, $\Delta R_{j\gamma} > 0.4$
3	≥ 2 jets identified as b-jets with leading (subleading) $P_T > 50(40)$ GeV, $ \eta < 3$
4	Events are required to contain ≤ 5 jets with $P_T > 40$ GeV within $ \eta < 5$
5	No isolated leptons with $P_T > 40$ GeV, $ \eta < 3$
6	$0.4 < \Delta R_{b\bar{b}} < 3.0, 0.4 < \Delta R_{\gamma\gamma} < 3.0$
7	$122.5 < M_{\gamma\gamma}/{\rm GeV} < 127.5$ and $90 < M_{b\bar{b}}/{\rm GeV} < 150$
8	$P_T^{\gamma\gamma}>100~{\rm GeV},P_T^{b\bar{b}}>100~{\rm GeV}$

TABLE XII. The same as in Table VI but at the HL-100 TeV hadron collider with an integrated luminosity of 3 ${\rm ab}^{-1}$.

Expected yields (3000 fb ⁻¹)	Total	Barrel-barrel	Other	Ratio (O/B)
Samples			(End-cap)	(-,-)
$H(b\bar{b}) H(\gamma \gamma), \lambda_{3H} = -4$	5604.46	4257.36	1347.10	0.32
$H(b\bar{b}) H(\gamma \gamma), \lambda_{3H} = 0$	1513.56	1163.04	350.52	0.30
$H(b\bar{b}) H(\gamma \gamma), \lambda_{3H} = 1$	941.37	723.86	217.51	0.30
$H(bar{b})H(\gamma\gamma),\lambda_{3H}=2$	557.36	431.45	125.91	0.29
$H(b\bar{b}) H(\gamma \gamma), \lambda_{3H} = 6$	753.18	566.18	187.00	0.33
$H(b\bar{b})H(\gamma\gamma), \lambda_{3H} = 10$	3838.33	2924.25	914.08	0.31
$gg H(\gamma \gamma)$	890.47	742.97	147.50	0.20
$t \bar{t} H(\gamma \gamma)$	868.73	659.33	209.40	0.32
$ZH(\gamma \gamma)$	168.86	122.91	45.95	0.37
$b \bar{b} H(\gamma \gamma)$	9.82	7.00	2.82	0.40
$b\bar{b}\gamma\gamma$	783.87	443.70	340.17	0.77
$c\bar{c}\gamma\gamma$	222.88	111.44	111.44	1.00
$jj\gamma\gamma$	32.28	20.98	11.30	0.54
$b\bar{b}j\gamma$	1982.88	1516.32	466.56	0.31
$c\bar{c}j\gamma$	293.81	216.49	77.32	0.36
$b\bar{b}jj$	3674.16	1924.56	1749.60	0.91
$Z(b\bar{b})\gamma\gamma$	54.87	35.72	19.15	0.54
$t\bar{t} \ (\geq 1 \text{ leptons})$	59.32	38.32	21.00	0.55
$t\bar{t}\gamma \ (\geq 1 \text{ leptons})$	105.68	62.53	43.15	0.69
Total Background	9147.63	5902.27	3245.36	0.55
Significance Z	9.681	9.239	3.777	
Combined significance		9.98	1	ノ9.9

Essence of analysis results at the HL-100 TeV hadron collider

FIG. 9. **HL-100 TeV**: (Left) The number of signal events N versus λ_{3H} with 3 ab⁻¹. The horizontal solid line is for the number of signal events s when $\lambda_{3H}^{\rm in} = 1$ and the dashed lines for $s \pm \Delta s$ with the statistical error of $\Delta s = \sqrt{s+b}$. (Right) The 1- σ error regions versus the input values of $\lambda_{3H}^{\rm in}$ assuming 3 ab⁻¹ (black) and 30 ab⁻¹ (red).

Essence of analysis results at the HL-100 TeV hadron collider

FIG. 10. **HL-100 TeV**: $\Delta \lambda_{3H} = \lambda_{3H}^{\text{out}} - \lambda_{3H}^{\text{in}}$ versus λ_{3H}^{in} along the $\lambda_{3H}^{\text{out}} = \lambda_{3H}^{\text{in}}$ line with 3 ab⁻¹ (upper) and 30 ab⁻¹ (lower). The lines are the same as in the right frame of Fig. 9. We consider $|\Delta \lambda_{3H}| \leq 0.3$ to find the regions in which one can pin down the λ_{3H} coupling with an absolute error smaller than 0.3.

Conclusions [HL-LHC]

- * We find that even for the most promising channel $^{HH} \rightarrow b\bar{b}\gamma\gamma$ at the HL-LHC with a luminosity of 3000 fb⁻¹, the significance is still not high enough to establish the Higgs self-coupling at the SM value.
- * Instead, we can only constrain the self-coupling to $-1.0 < \lambda_{3H} < 7.6$ at 95% confidence level after considering the uncertainties associated with the top-Yukawa coupling and the estimation of backgrounds.

Conclusions [HL-100 TeV hadron collider]

- * With a luminosity of 3 ab^{-1} , we find there exists a bulk region of $2.6 \lesssim \lambda_{3H} \lesssim 4.8$ in which one can't pin down the trilinear coupling.
- * At the SM value, we show that the coupling can be measured with about 20% accuracy.
- * While assuming $_{30~ab^{-1}}$, the bulk region reduces to $_{3.1}\lesssim\lambda_{3H}\lesssim4.3$ and the trilinear coupling can be measured with about $_{7\%}$ accuracy at the SM value.