

The JUNO Calibration System

Qingmin Zhang (On behalf of JUNO Collaboration) Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China

1. Introduction of JUNO

- The Jiangmen Underground Neutrino Observatory (JUNO), which will be constructed at Kaiping, Jiangmen in South China, is designed to primarily determine the neutrino Mass Hierarchy(MH) by detecting reactor anti-neutrinos via inversed beta decay.
- JUNO central detector (CD), an acrylic sphere with a diameter of 35.4m, is filled with liquid scintillator(LS) and equipped with more than 50000 PMTs in total to measure the energy of neutrinos.
- The energy resolution should be $\leq 3\%/\sqrt{E}$ to determine MH in 3σ in 6 years, so the calibration system is very critical and has been designed.

2. Calibration Systems

System	Frequency	Positioning	Position Control	Source change	Others
ACU	Weekly	Rope Length	Spool drive (steel wire coated with Teflon Φ1.0) +Tension Control	Manual	All are critical, have to be combined
CLS	Monthly	Rope Length, CCD Ultrasonic receiver		Automatic	
GTCS	Monthly	Rope Length Metal Sensor		Manual	
ROV	When needed, seasonally or annually	Ultrasonic receiver CCD	Remotely Operated Vehicle	Manual	Insurance

Vehicles (ROV) for whole CD scan

3. Calibration Strategy

3.1 Uniformity Correction

- Calibrate JUNO response function by using the data from the given calibration points.
- A simple spline function is used to predicate the "blank" region.
- The energy response uniformity would be corrected with the correction function.
- Energy resolution of 1.022MeV uniformly distributed positron is 2.98%, bias of the mean value is ~0.04%

Resolution is improved by correction

3.2 Linearity Correction

- Energy Linearity is corrected by placing various sources at CD center.
- 9 gamma sources are used to study the detector's linearity.
- As a verification test, the energy bias (non-linearity) to mono-energy positron at CD center is < 0.5% after correction.

3.3 Overall Energy Resolution

- The simulated mono-energy e+ events are uniformly distributed in CD and the non-uniformity correction (response is obtained with $^{40}\mathrm{K}$) is applied .
- The bias <0.1% and the energy resolution <3.0%.

4. Source Delivery Systems

Automatic Calibration Unit (ACU)

- ACU is used for calibration along central axis (1-D).
- It supports γ/neutron/laser source.
- Source positioning is a few mm.
- It provides an access for manually changing calibration source which is important for non-linearity correction.

- Two cable loops on both sides, source position is controlled by spools with Teflon-coated steel cable.
- Source can reach most area in one plane
- Source position inaccuracy is controlled to be <10 cm (tested) with CLS alone.
- Independent ultrasonic system is used for the source positioning (ultrasonic emitter is attached with source)

◆ Guide Tube Calibration System (GTCS)

- GTCS is used for calibration along boundary area and provides boundary condition for correction map.
- Source delivery is controlled by servomotors, Teflon tube and Teflon-coated steel cable are used to minimize the friction.
- Source position inaccuracy is < 10 cm.
- Remotely Operated Vehicle (ROV)

- An ultrasonic emitter is attached with ROV for the source positioning. 8 ultrasonic receivers will monitor ROV's position.
- Positioning accuracy can reach ~4cm, and ROV is designed to be stable within 3 cm in 5 minutes.

39th International Conference on High Energy Physics, Jul. 4-11, 2018, Seoul, Korea