

Update on the TowerJazz CMOS DMAPS development for the ATLAS ITk

A. Sharma¹; B. Hiti²; C. Solans Sanchez³; C.A.M. Tobon³; C. Riegel⁴; E.J. Schioppa³; F. Dachs⁵; H. Pernegger³; I. Asensi Tortajada⁶; I. Berdalovic³; J.W. Van Hoorne⁷; L.S. Argemi⁸; M. Moreno Llacer³; Norbert Wermes⁹; N. Egidos Plaja¹⁰; P. Riedler³; P. Rymaszewski⁹; R. Cardella³; S. Monzani¹¹; T. Kugathasan³; T. Hemperek⁹; V. Dao³; W. Snoeys³

Deep N-Well

P-Substrate (>1k Ω cm)

P-Substrate (>1k Ω cm)

Glossary:

CMOS: Complementary Metal Oxide Semiconductor **DMAPS**: Depleted Monolithic Active Pixel Sensor **ITk**: Inner Tracker (of the ATLAS experiment)

ATLAS ITk Pixel Detector

-5th layer of pixel tracker:

Challenges: Occupancy: 1MHz/mm² \triangleright Expected NIEL: 10¹⁵ N_{eq}/cm² TID : 50 Mrad \triangleright Active area of 5th layer: 3 m²

Upgrades and Changes:

 \supset η coverage increased to 4.0 \triangleright 5 barrels, 10 pixel rings \triangleright All silicon designs to cope with occupancy and pile up in HL-LHC

Radiation Resistant CMOS Sensors

TJ180nm CMOS Process Modification

Two variants:

 \triangleright CMOS circuitry inside collection diode CMOS circuitry in separate deep p-well

Advantages:

- Complex electronics in active area of pixel matrix \triangleright Very thin at around 100 μ m
- Cheaper by a factor~3 (no front end no bump bonding)
- \triangleright Production in large quantities much easier (layer 5 of ITk is largest!)

Signal Generation:

- \triangleright Voltage on collection diode drops when charge from an incident particle is collected and is "slowly" recovered via diode reset
- \supset Initial diode signal is amplified by the in-pixel circuitry and then read out

Kolanoski, Wermes 2015

next pixel

Kolanoski, Wermes 2015

N-Contact

Charge collection partially via **diffusion** (far from electrode)

Standard Process:

- \triangleright Depletion only around collection diode
 - and **via drift** (close to electrode)

DIFFUSION $N_{A} \sim 10^{13} \text{ cm}^{-3}$ Epitaxial layer p $N_{A} \sim 10^{18} \text{ cm}$ pstrate p+-

Modified Process:

- \triangleright Interstitial n-implant ensures homogeneous depletion across whole bulk
- Charge collection **only via** drift thus faster and more radiation tolerant

ITk Strip Tech. Design Report, CERN-LHCC-2017-005. ATLAS-TDR-025

TowerJazz Investigator

Features:

- > 134 "mini-matrices" with a great variety of pixel designs
 - J pixel pitches range from 20µm to 50µm
 - > variable deep p-well coverage
 - > variable shape of collection diode
 - > analogue output of signal waveform
 - for detailed analysis
 - 3T (3 transistor) readout
 - **dedicated** reset
 - > single pixel readout

Minimatrix 106:

- Mini-matrix 106 was measured extensively
- **30μm** x 30μm pixel pitch
- $3 \mu m$ collection diode
- Jarge deep p-well extends close to collection diode

General Information:

- ☐ full sized digital chip
- \ge 25µm epil layer, fully depleted
- > 512 x 512 pixels with a 36.4 x 36.4 μ m² pitch
- > 8 sectors of 64 columns with different pixel flavours
- > fully asynchronous operation
 - } readout via asynchronous oversampling

	S 0	S1	S2	S 3	S4	S5	S6	S
	diode	diode	diode	diode	PMOS	PMOS	PMOS	PM
	reset	reset	reset	reset	reset	reset	reset	re
(2 μm	2 μm	3 μm	3 μm	3 μm	3 μm	2 μm	2
	el. size	el. size	el. size	el. size	el. size	el. size	el. size	el.
S	4 μm	4 μm	3.5 μm	3.5 μm	3.5 μm	3.5 μm	4 μm	4
	pacing	spacing	spacing	spacing	spacing	spacing	spacing	spa
	med.	max.	max.	med.	med.	max.	max.	m
	deep	deep	deep	deep	deep	deep	deep	de
	p-well	p-well	p-well	p-well	p-well	p-well	p-well	p-v

Threshold scan

} is close to the design of the pixels for the first full sized digital chip "MALTA"

collection diode

Results:

Software threshold of 110e

- high efficiency maintained after irradiation of 10¹⁵ N_{eq}/cm²
- > efficency is maintained at pixel borders and edges (see center of efficiency plot) Cluster size cleary indicates charge sharing even further away from pixel borders

 \triangleright low capacitance greatly reduces noise \triangleright low noise allows for operation at very low thresholds \Rightarrow ENC of only ~15-20e⁻ possible! \supset low thresholds are needed for thin epi layers of 25µm thickness which can be fully depleted > full depletion of epi layer means charge is only collected via drift } chip is faster and more tolerant to radiation damages Charge deposition is inferred from time walk of signal > 500nA/pixel or <70mW/cm²

Time walk for Sr⁹⁰, unirradiated, QTH = 210e⁻

