The CMS Tracker Upgrade for the High Luminosity LHC

Martin Delcourt
on behalf of the Compact Muon Solenoid collaboration

5th of July 2018

39th International Conference on High Energy Physics
The LHC will be upgraded in 2024 for a High-Luminosity phase

Great opportunity for physics but challenge for experiments

- High instantaneous luminosity
- High integrated luminosity
CMS Tracker Upgrade for the HL-LHC

Introduction

- To maintain the detector’s outstanding performance, its tracker (among others) will be upgraded

- The new tracker will need to:
 - **Be radiation tolerant**
 Total radiation dose 10x higher
 - **Have a higher granularity**
 Keep channel occupancy at percent level
 - **Reduce its material budget**
 Improves tracking performance
 - **Participate to Level-1 trigger**
 Necessary to stay effective
CMS Tracker Upgrade for the HL-LHC

Plan of the talk:

- Inner Tracker Upgrade
- Outer Tracker Upgrade
- New layout and expected performances
- L1 tracking

Sketch of one quarter of the current (phase 1) CMS tracking system.

Pixel detector, single sided and double sided strip modules.
CMS Tracker Upgrade for the HL-LHC

Inner tracker

- Radiation tolerance is key for the inner tracker
 - Up to 1.2 Grad and $2.3 \times 10^{16} \text{n}_{eq}/\text{cm}^2$ for 3000 fb$^{-1}$
 - Possibility of replacement if needed

- Two n-in-p type sensors are being considered
 - Thin (100-150 µm) planar sensors
 - 3D sensors, higher radiation tolerant but more expensive

→ Would be limited to highest fluence regions

Planar sensor

Charge (electrons)

Number of entries

10^3

2×10^3

1×10^3

0

Charge (electrons $\times 10^3$)

30

25

20

15

10

5

0

Fit: Landau + Gaussian

$\chi^2 / \text{ndf} = 1080 / 286$

Width (e$^-)$ 422.1 ± 4.2

MPV (e$^-)$ 5722 ± 7.4

Noise (e$^-)$ 1387 ± 7.8

p$^+$ irrad to $1.2 \times 10^{15} \text{n}_{eq}/\text{cm}^2$

$V_{bias} = 300 \text{V}$

Temperature $= -20 ^\circ \text{C}$

3D sensor

Charge (electrons $\times 10^3$)

Number of entries

500

400

300

200

100

0

10

20

30

40

50

60

MPV $= 16 \text{k electrons}$

$25 \times 100 \times 230 \ \mu\text{m}^3$

p$^+$ irrad to $5.7 \times 10^{16} \text{n}_{eq}/\text{cm}^2$

$V_{bias} = 180 \text{V}$

Temperature $= -25 ^\circ \text{C}$

120 GeV π^+/p^+ beam
CMS Tracker Upgrade for the HL-LHC

Inner tracker

• To keep a low occupancy in the inner tracker, smaller pixels are considered.
 - 50x50 µm or 25x100 µm (6 x smaller than now)

• **Pixel Read Out Chip (PROC)** will have to be radiation hard and cope with a hit rate up to 3 GHz/cm²
 - Being developed within RD53 (CMS-ATLAS collaboration)

• Two different flavours, **one** or **two** rows of two PROCs (~16.4x22.0 mm²)
CMS Tracker Upgrade for the HL-LHC
Outer tracker

- For L1 triggering, data has to be sent for every bunch crossing
 - Full data would exceed bandwidth
 - **Data reduction is needed at detector level**
 2GeV cut → data reduction of 10x to 100x

- High transverse momentum tracks can be selected by correlating hits on two sensors
 - "Stubs" read-out at 40MHz
 - **Full data** read-out if triggered (~750kHz)
CMS Tracker Upgrade for the HL-LHC

Outer tracker

- Outer tracker modules:
 - Planar n-in-p, 200µm thick sensors
 - Binary read-out chips
 - Zero-suppression and data aggregation at module level

- **2S** strip modules
 - 2x1016 strips ~5cm x 90µm
 - 2x1016 strips ~5cm x 90µm

- **Pixel** strip modules
 - 2x960 strips ~2.4cm x 100µm
 - 32x960 macro-pixels ~1.5mm x 100µm
CMS Tracker Upgrade for the HL-LHC
Outer tracker

- Prototypes are being tested and characterized in beam
 - **Stubs are correctly produced** (p_T emulated by rotating module in beam)
 - High efficiency
CMS Tracker Upgrade for the HL-LHC
Current layout

Sketch of one quarter of the *current* (phase 1) CMS tracking system
CMS Tracker Upgrade for the HL-LHC
New layout

Sketch of one quarter of the phase 2 CMS tracking system

- Tilted barrel to optimize stub efficiency
- Reduction of material budget
- Extended eta coverage from to $|\eta| \leq 4$
 - Increases forward acceptance
 - Mitigates pile-up effects in forward region
CMS Tracker Upgrade for the HL-LHC

Expected performances

- Full Monte-Carlo simulation

- Significant improvement expected in \(p_T \) and \(d_0 \) resolution

- 90% tracking efficiency for tracks from \(\text{tt} \) events with < 2% fake rate

- Work in progress!
 - Geometry is being optimized
 - Efficiency at \(|\eta| \sim 1.2\) is being addressed
CMS Tracker Upgrade for the HL-LHC
L1 track finding

- Tracking at L1 is a challenging task
 - Tracks need to be produced within ~ 5µs
 - Two different all-FPGA solutions are considered

- Tracklet approach
 - “Tracklets” formed from stubs in adjacent layers
 - Extrapolate to tracks, minimize chi² (linearised chi² fit)
 - Remove duplicates

- Hough transform approach
 - Select track candidate through Hough transform
 - Minimize chi² (Kalman Filter)
 - Remove duplicate
CMS Tracker Upgrade for the HL-LHC
L1 track finding

- Demonstrators were set-up for both approaches
 - Simulated event used as input
 - Similar results obtained
 - Tracks produced within timing constraints

- Work being done to merge approaches
CMS Tracker Upgrade for the HL-LHC

Summary

• The phase-2 tracker upgrade is necessary in order to maintain the detector performance

• The new design will allow to keep tracking performance under a high pile-up and radiation environment

• Tracks will be sent to the CMS level-1 trigger at 40 MHz

• Design is well advanced
 - many prototypes have been produced and tested
 - the upgrade concepts have been validated
 - mechanics, integration and installation concepts well advanced

• Final prototyping and EDR are awaiting us!
The CMS Tracker Upgrade for the High Luminosity LHC

Martin Delcourt
on behalf of the Compact Muon Solenoid collaboration

5th of July 2018

39th International Conference on High Energy Physics
CMS Tracker Upgrade for the HL-LHC
Backup – Why do we need a track trigger?
CMS Tracker Upgrade for the HL-LHC
Backup – Hough transform
CMS Tracker Upgrade for the HL-LHC
Backup – Tilted barrel stub efficiency
Figure 11.4: Schematics of the 2PACL cooling system concept as used in the CMS pixel Phase-1 upgrade.
CMS Tracker Upgrade for the HL-LHC
Backup – Mechanical view
CMS Tracker Upgrade for the HL-LHC
Backup – Read out

Pixel region: 2x2 (1x4 or 4x4)
Pixel core: 8x8 pixels
Pixel array: 22x16.4mm² = 144k pixels of 50x50um²

SLDO
DAC
DAC
Config
Config
region proc
B-ID tag
B-ID
Trigger match
Link Int.

Compress
Format
Readout Interface

ECC: End Of Column 22mm

25 modules
FE hybrid L
FE hybrid R

HV
LV
LV/HV PS
CTRL
TTC
DAQ

FE
BE
m-Tx
m-Rx
LPGBT
FPGA
Process & Route

L1 track-finding

Pattern recognition
Track fit
Result
CMS Tracker Upgrade for the HL-LHC
Backup - Outer tracker sensor irradiation

Graphs:
- **Graph 1:**
 - Title: n-in-p type ddFZ silicon after 20 weeks of annealing
 - X-axis: Voltage (V)
 - Y-axis: Seed signal (e⁻)
 - Data points:
 - 200µm 6x10⁶ n⁺/cm² (p)
 - 200µm 7x10⁶ n⁺/cm² (p+p)
 - 240µm 6x10⁶ n⁺/cm² (p)
 - 300µm 7x10⁶ n⁺/cm² (p+p)

- **Graph 2:**
 - Title: n-in-p type ddFZ silicon after 20 weeks of annealing
 - X-axis: Voltage (V)
 - Y-axis: Seed signal (e⁻)
 - Data points:
 - 200µm 1.5x10⁷ n⁺/cm² (p+p)
 - 240µm 1.0x10⁷ n⁺/cm² (p)
 - 300µm 1.0x10⁷ n⁺/cm² (n)

Additional Graph:
- Title: Stub efficiency
 - X-axis: p_T (GeV)
 - Y-axis: Stub efficiency
 - Data points:
 - Non-irradiated placed at a radius = 68.8cm
 - Irradiated to 6x10⁶ n⁺/cm² placed at a radius = 60cm
 - Irradiated to 6x10⁶ n⁺/cm² placed at a radius = 60cm
 - Irradiated to 6x10⁶ n⁺/cm² placed at a radius = 60cm
 - Irradiated to 6x10⁶ n⁺/cm² placed at a radius = 60cm
 - Irradiated to 6x10⁶ n⁺/cm² placed at a radius = 60cm
CMS Tracker Upgrade for the HL-LHC
Backup - Outer tracker beam test