

The CLIC detector

Eva Sicking (CERN) on behalf of the CLICdp collaboration

International Conference of High Energy Physics 2018 Coex, Seoul, South Korea 6 July 2018

CLIC: Compact Linear Collider

- High-luminosity linear e⁺e⁻ collider at the energy frontier
- Energy from few hundred GeV up to 3 TeV
- Two-beam acceleration scheme
- High acceleration gradient of 100 MV/m
- Physics goals:
 - Precision measurements of SM processes: Higgs boson, top quark
 - Precision measurements of new physics potentially discovered at LHC or CLIC
 - Indirect and direct searches for new physics: unique sensitivity to particles with electroweak charge

ICHEP 2018

Input for CLIC detector design

Beam-induced backgrounds

Achieve high luminosities by using extremely small beam sizes

- Bunch size @ 3 TeV: σ_{x;y} = {40 nm; 1 nm}
- ▶ Very high E-fields → beam-beam interac.

Main backgrounds ($p_T > 20 \text{ MeV}, \theta > 7.3^\circ$):

- Incoherent e^+e^- pairs and $\gamma\gamma \rightarrow hadrons$
 - $\blacktriangleright~\sim$ 34k particles/bunch train at 3 TeV
 - ► → Impact on detector granularity, design and physics measurements

Beam structure

- 1) Bunch separation and occupancies from beam-induced backgrounds define timing requirements of sub-detector
 - ~ 5 ns hit time-stamping in tracking
 - 1 ns accuracy for calorimeter hits
- 2) Low duty cycle
 - Power pulsing of detectors

ICHEP 2018

CLIC detector optimised for 3 TeV

- Large silicon tracker
 R=1.5 m
- ECAL with 40 layers (22 X₀)
- HCAL with 60 layers (7.5 λ_l)
- B-field of 4 T

 Last focussing magnet QD0 12.
 outside detector: increased HCAL forward acceptance

Vertex and tracking detector requirements

Vertex-detector

- Flavour tagging
- $\rightarrow~$ Single point resolution: $\sigma < 3\,\mu m$
- → Small pixels $\lesssim 25 \times 25 \,\mu\text{m}^2$, analog readout → ~ 1.3 billion channels
- $ightarrow \lesssim 0.2 \, \% X_0 \ / \ {
 m layer}$
- \rightarrow Power pulsing
- → Low power dissipation ASIC + air cooling $\rightarrow \leq 50 \text{ mW/cm}^2$

Tracker

- Momentum resolution
- $\rightarrow 7 \,\mu\text{m single-point resolution}$ $\rightarrow (30-50 \,\mu\text{m pitch in } R\phi)$
- → Light-weight support structure and services

Vertex and Tracker

- Time stamping ~ 5 ns
- \rightarrow Depleted sensors (high resist./voltage)
- Few % occupancy from beam-induced bkg.
- Low radiation exposure (10⁴ below LHC)

CLIC vertex detector: 0.84 m²

CLIC silicon pixel R&D activies

Sensor and readout technologies

Beam tests with Timepix3 telescope

Sensor and readout technology	Considered at CLIC for
Bump-bonded hybrid planar sensors Capacitively coupled HV-CMOS Monolithic HV-CMOS sensor Monolithic HR-CMOS sensor Monolithic SOI sensors	Vertex detector Vertex detector Tracker Tracker Vertex detector, Tracker

Cracow SOI DUT C3PD+CLICpix2 Caribou r/o

CLICpix bump bonded to 50 µm planar sensor

CLICpix2+C3PD glue assembly

ATLASPix HV-CMOS

Detector integration studies

Powering concepts for power pulsing

Cooling concepts

ICHEP 2018

Hybrid: planar-sensor assemblies

CLICpix with 50 μm planar sensor

- 65 nm demonstrator CLICpix r/o ASIC
 - ▶ 64 × 64 pixel matrix
 - 25 µm pixel pitch
- Indium bump-bonding
- ► Assemblies with 50 200 µm thick sensors
- Residuals at 3.5 µm for 200 µm sensors, ~ 8µm for 50 µm sensors
- ► More charge sharing in thicker sensors → better resolution
- Alternative for thin sensors: Increase charge sharing by dedicated implants in sensor

Particle flow calorimeters

▶ Jet energy resolution of $\sigma_E/E \approx 5 - 3.5\% \rightarrow$ Highly granular calorimeters

Si-W-ECAL

- 2 mm thick tungsten plates interleaved with 500 μm thick silicon sensors
- 40 layers: 22 X₀ or 1 λ₁
- $5 \times 5 \text{ mm}^2$ silicon cell size
- $ightarrow \sim 2500 \, \text{m}^2$ silicon
- $ightarrow ~ \sim$ 100 million channels

Scint-Fe-HCAL

- 19 mm thick steel plates interleaved with 3 mm thick plastic scintillator + SiPMs
- 60 layers: 7.5 λ_l
- $30 \times 30 \text{ mm}^2$ scintillator cell size
- $\rightarrow ~\sim 9000 \, \text{m}^2$ scintillator
- $\rightarrow~\sim$ 10 million channels / SiPMs
- Compact design of all components
- Calibration of channels
- ► Time stamping < 1 ns

Calorimetry: technologies for active layers

- Hardware R&D by CALICE and FCAL collaborations
 - Build prototypes of highly granular calorimeters, compact design
 - Use different absorbers and different active layer technologies
 - Validate Geant4 simulations
 - Optimise detector geometry in simulations for optimal physics performance
- Synergy with ILC (ILD/SiD) and CMS HGCal

CALICE silicon PIN diodes $1 \times 1 \text{ cm}^2$ in 6×6 matrices

LumiCal silicon sensor petal 1.8 mm wide strips, diff. lengths

 $\frac{\text{CMS HGCal silicon diodes}}{\sim 1\,\text{cm}^2 \text{ cells on 8-inch wafer}}$

ICHEP 2018

Eva Sicking: The CLIC detector

Calorimetry: technologies for active layers

- Hardware R&D by CALICE and FCAL collaborations
 - Build prototypes of highly granular calorimeters, compact design
 - Use different absorbers and different active layer technologies
 - Validate Geant4 simulations
 - Optimise detector geometry in simulations for optimal physics performance
- Synergy with ILC (ILD/SiD) and CMS HGCal

CALICE silicon PIN diodes $1 \times 1 \text{ cm}^2$ in 6×6 matrices

ICHEP 2018

Full detector simulations at CLIC

- Active software development for CLIC and LC community, e.g.
 - ▶ DD4hep → Generic detector description, Geant4 simulation
 - Marlin \rightarrow Reconstruction
 - iLCDirac \rightarrow Grid production
- Full Geant4 detector simulation including overlay of beam induced backgrounds
- Full reconstruction chain including reconstruction of tracks and clusters → particle flow objects → jets → flavour tagging

 $e^+e^- \rightarrow H v_e \overline{v}_e \rightarrow b \overline{b} v_e \overline{v}_e \ @ 1.4 \text{ TeV}$

ICHEP 2018

CLIC detector performance: examples

Momentum resolution

Jet energy resolution

- Track reconstruction using conformal tracking
- Transverse momentum resolution of $2 \times 10^{-5} \text{ GeV}^{-1}$ achieved for high-energy tracks in the barrel
- Jet energy resolution using particle flow analysis and software compensation
- Requires detailed calibration and tuning for all detector regions

Flavour tagging: charm

- Vertex finder reconstructs primary and secondary vertices
- Jet reconstruction using jet clustering algorithm

ICHEP 2018

CLIC detector performance: examples

Momentum resolution

Jet energy resolution

- Track reconstruction using conformal tracking
- Transverse momentum resolution of $2 \times 10^{-5} \text{ GeV}^{-1}$ achieved for high-energy tracks in the barrel
- Jet energy resolution using particle flow analysis and software compensation
- Requires detailed calibration and tuning for all detector regions

Flavour tagging: charm

- Vertex finder reconstructs primary and secondary vertices
- Jet reconstruction using jet clustering algorithm

ICHEP 2018

Summary

- CLIC detector concept is mature
 - Well-established detector technology development programme
 - Proof-of-concepts of most-challenging detector concepts
 - Study engineering challenges with realistic constraints
 - Performant reconstruction software
 - Optimized detector model from full detector simulation
 - Synergies with other future collider proposals and LHC experiment upgrades
- CLIC accelerator is ready to be built
- Valuable and guaranteed physics programme
 - Excellent Standard Model coverage
 - High-precision measurements of Higgs and top quark
 - Sensitivity to wide range of BSM phenomena through indirect and direct searches

 \rightarrow Talk by Daniel Schulte: CLIC (Sat.)

- \rightarrow Talk by Ulrike Schnoor: top quark (Fri.)
- \rightarrow Talk by Filip Żarnecki: top quark (Sat.)
- \rightarrow Talk by Matthias Weber: Higgs (Sat.)
- → Talk by Roberto Franceschini: BSM (Sat.)

Backup

ICHEP 2018

Eva Sicking: The CLIC detector

14/12

References

CLIC time line

2013 - 2019 Development Phase

Development of a Project Plan for a staged CLIC implementation in line with LHC results; technical developments with industry, performance studies for accelerator parts and systems, detector technology demonstrators

2020 - 2025 Preparation Phase

Finalisation of implementation parameters, preparation for industrial procurement, Drive Beam Facility and other system verifications, Technical Proposal of the experiment, site authorisation

2026 - 2034 Construction Phase

Construction of the first CLIC accelerator stage compatible with implementation of further stages; construction of the experiment; hardware commissioning

2019 - 2020 Decisions

Update of the European Strategy for Particle Physics; decision towards a next CERN project at the energy frontier (e.g. CLIC, FCC)

2025 Construction Start

Ready for construction; start of excavations

2035 First Beams

Getting ready for data taking by the time the LHC programme reaches completion

Hadron vs. lepton colliders

- 1) Proton is compound object
 - Initial state unknown
 - Limits achievable precision
- 2) High rates of QCD backgrounds
 - Complex triggers
 - High levels of radiation
- Very high-energy circular colliders feasible

- 1) e^{\pm} are point-like
 - Initial state well-defined (energy, opt.: polarisation)
 - High-precision measurements
- 2) Clean experimental environment
 - Less/no need for triggers
 - Lower radiation levels
- **3)** Very high energies require linear colliders

Hadron vs. lepton colliders

- 1) Proton is compound object
 - Initial state unknown
 - Limits achievable precision
- 2) High rates of QCD backgrounds
 - Complex triggers
 - High levels of radiation
- Very high-energy circular colliders feasible

$$e^+e^- \text{ collisions:} ZH \rightarrow \mu^+\mu^-b\overline{b}$$

- 1) e^{\pm} are point-like
 - Initial state well-defined (energy, opt.: polarisation)
 - High-precision measurements
- 2) Clean experimental environment
 - Less/no need for triggers
 - Lower radiation levels
- **3)** Very high energies require linear colliders

Circular vs. linear e^+e^- colliders

Circular colliders (CC)

- Can accelerate beam in many turns
- Can collide beam many times
- Possibility of several interaction regions
- Limited energy due to synchrotron radiation
 - ► Mass_{proton} / Mass_{electron} ≈ 2000
 - Synchrotron radiation~ Energy⁴/(Mass⁴ · Radius)
 - E.g. 2.75 GeV/turn lost at LEP for *E* = 105 GeV
- Shield detector against synchrotron radiation

accelerating cavities

Linear colliders (LC)

- Very little synchrotron radiation in a linac
- Can reach high energies
- Have to achieve energy in a single pass
 - \rightarrow High acceleration gradients needed
- One interaction region
- Have to achieve luminosity in single pass
 - \rightarrow Small beam size and high beam power
 - \rightarrow Beamstrahlung, energy spread

Landscape of high-energy e⁺e⁻ colliders

Circular Electron Positron Collider (CEPC) e^+e^- , $\sqrt{s} = 90-240 \text{ GeV}$ Circumference: $\sim 100 \text{ km}$

e⁺e⁻ energy reach

- \blacktriangleright Comparison: Peak luminosity at LEP2 (209 GeV) was $\sim 10^{32} {
 m cm}^{-2} {
 m s}^{-1}$
- Disclaimer: figure for illustrative purposes only; it may not have the latest performance numbers

Physics programmes focus on precision measurements and searches

- \rightarrow FCC-ee: Z, W, Higgs, top, indirect BSM searches
- \rightarrow CEPC: Z, W, Higgs, indirect BSM searches
- \rightarrow ILC: Higgs, top, indirect and direct BSM searches
- \rightarrow CLIC: Higgs, top, indirect and direct BSM searches with

highest mass reach for available e⁺e⁻ collider proposals

e^+e^- energy reach \rightarrow physics programmes c

Physics programmes focus on precision measurements and searches

- \rightarrow FCC-ee: Z, W, Higgs, top, indirect BSM searches
- \rightarrow CEPC: Z, W, Higgs, indirect BSM searches
- \rightarrow ILC: Higgs, top, indirect and direct BSM searches
- \rightarrow CLIC: Higgs, top, indirect and direct BSM searches with **highest mass reach** for available e^+e^- collider proposals

Drive beam supplies RF power

- 12 GHz bunch structure
- High current 100 A
- Low energy 2.4 GeV –240 MeV

Main beam for physics

- Lower current 1.2 A
- High energy 9 GeV 1.5 TeV

ICHEP 2018

ICHEP 2018

ICHEP 2018

CLIC accelerator modules

CLIC two-beam module

CLIC two-beam test stand

- Gradients of > 100 MV/m routinely achieved in two-beam test stand
- 20,000 modules needed for 3 TeV accelerator of 50 km length

Staged implementation

- \blacktriangleright Want to reach high luminosities ($\sim 10^{34}\, {\rm cm}^{-2} {\rm s}^{-1})$
- Achievable for \sqrt{s} from 350/380 GeV to 3 TeV in staged construction
- Three stages with 11 km 50 km length
- Constructing next stage while taking data with current stage

CLIC layout at 3 TeV

Hybrid: capactively coupled assemblies

- 65 nm CLICpix2 r/o ASIC
 - Increased matrix with 128 × 128 pixels
 - 25 µm pixel pitch
- Glue assemblies with active HV-CMOS sensors with resistivities 20, 80 and 200 Ωcm
- \blacktriangleright Higher resistivity \rightarrow larger depletion volume \rightarrow larger and faster signal
- Beam tests with 20 Ωcm assemblies: spatial resolution of 8.5 9μm
- Expect improved performance for high-resistivity substrates

Cluster size

State of the second sec

x_{hit} - x_{track} / mm

Position resolution

ICHEP 2018

Monolithic: high-resistivity CMOS

- Monolithic Active Pixel Sensor (MAPS) based on fully integrated CMOS technology
- 180 nm HR-CMOS process
 - High-Resistivity epitaxial layer (15 – 40 μm, 1 – 8k Ωcm)
 - CMOS circuitry shielded by deep P-well
 - Standard and modified process (additional low-dose N-implant for full lateral depletion → improved radiation hardness)
- ALICE Investigator analog test chip
 - 134 mini-matrices with 8 x 8 pixels with various pixel sizes (20 × 20 µm to 50 × 50 µm) and collection electrode geometries
 - Beam tests using chips with 25 μm epitaxial layer and resistivity of 8k Ωcm
 - Spatial resolution down to 3.5 μm for 28 μm pixel pitch
 - Standard process: more charge sharing
 - \rightarrow better resolution

Resolution for matrix with $28\,\mu m$ pitch

Monolithic: high-resistivity CMOS

- Monolithic Active Pixel Sensor (MAPS) based on fully integrated CMOS technology
- 180 nm HR-CMOS process
 - High-Resistivity epitaxial layer $(15 - 40 \,\mu\text{m}, \, 1 - 8 \,k\,\Omega\text{cm})$
 - CMOS circuitry shielded by deep P-well
 - Standard and modified process (additional low-dose N-implant for full lateral depletion \rightarrow improved radiation hardness)
- ALICE Investigator analog test chip
 - ▶ 134 mini-matrices with 8 x 8 pixels with various pixel sizes $(20 \times 20 \,\mu\text{m to})$ $50 \times 50 \,\mu m$) and collection electrode geometries
 - Beam tests using chips with 25 µm epitaxial layer and resistivity of $8k \Omega cm$
 - Spatial resolution down to 3.5 µm for 28 µm pixel pitch
 - Standard process: more charge sharing
 - \rightarrow better resolution

Modified process

Monolithic: high-resistivity CMOS

- Monolithic Active Pixel Sensor (MAPS) based on fully integrated CMOS technology
- 180 nm HR-CMOS process
 - High-Resistivity epitaxial layer (15 – 40 μm, 1 – 8k Ωcm)
 - CMOS circuitry shielded by deep P-well
 - Standard and modified process (additional low-dose N-implant for full lateral depletion → improved radiation hardness)
- ALICE Investigator analog test chip
 - 134 mini-matrices with 8 x 8 pixels with various pixel sizes (20 × 20 µm to 50 × 50 µm) and collection electrode geometries
 - Beam tests using chips with 25 μm epitaxial layer and resistivity of 8k Ωcm
 - Spatial resolution down to 3.5 μm for 28 μm pixel pitch
 - Standard process: more charge sharing
 - ightarrow better resolution

ALICE investigator

Resolution for matrix with $28\,\mu m$ pitch

Monolithic: Silicon on Insulator

- Monolithic pixel detectors in SOI (Silicon on Insulator)
 - Thin SOI CMOS (200 nm feature size) and thick sensor bulk
 - ► High-resistive fully depleted sensor → Large S/N and high speed
 - Pixel pitch down to 30 μm
 - ► Target thickness of 100 µm for CLIC
- Test results for 500 μ m thickness, 30 × 30 μ m² pitch, rolling-shutter r/o: > 99% efficiency, $\sigma_{SP} \lesssim 2 \,\mu$ m

Cracow SOI test chip

Resolution in y-direction

 Outlook: Production of vertex test chip CLIPS (CLIC Pixel SOI) with 20 µm pitch and 75-500 µm thickness (summer 2018)

Vertex detector: air cooling

- Vertex-detector heat load of \leq 50 mW/cm²
- Extractable using air flow \rightarrow low material budget
- Spiral vertex disks allow air flow through detector
 - Simulation studies of air velocity, temperature, study of potential vibrations
 - Experimental verification with 1:1 thermomechanical mockup

1:1 scale thermo-mechanical mockup of vertex detector

Simulation results: Temperature

ICHEP 2018

CALICE technology prototypes

Tile-board assembly: $3 \times 3 \text{ cm}^2$ tiles

- Beam tests with AHCAL technology prototype in 2018
 - 38 layers, 21 888 tiles and SiPMs
 - Automated production, quality assurance
 - LED calibration, active temperature compensation
- Smaller AHCAL stacks also used as backing HCAL in combined CMS HGCal + AHCAL beam tests

CMS HGCal + AHCAL beam tests

ICHEP 2018

CALICE technology prototypes

- Beam tests with AHCAL technology prototype in 2018
 - 38 layers, 21 888 tiles and SiPMs
 - Automated production, quality assurance
 - LED calibration, active temperature compensation
- Smaller AHCAL stacks also used as backing HCAL in combined CMS HGCal + AHCAL beam tests

CMS HGCal + AHCAL beam tests

ICHEP 2018

Forward CALorimetry: FCAL

- Very forward e.m. calorimeters
- e and γ acceptance to small angles
 - LumiCal for luminosity measurement (< ±1% accuracy)</p>
 - BeamCal for very forward electron tagging
 - BeamCal: GaAs, LumiCal: silicon
- ► Very compact design (sensors, read-out, absorber) → small Molière radius
- Test beams at DESY with first submilimiter LumiCal detector module (640 µm)

Stack used in test beam

LumiCal $R_{out} = 34 \text{ cm}$, BeamCal $R_{out} = 15 \text{ cm}$

CLIC detector optimisation

- Optimisation of CLIC detector model in full detector simulations
 - Ensure that detector performance meets requirements
 - Validate full software chain

$\textbf{ECAL configuration} \leftrightarrow \textbf{Photon energy reco.}$

Reduce out-of-time background

- ▶ Use combined *p*_T and timing cuts to reduce out-of-time background
 - Cuts optimised for detector regions
 - Cluster timing by combining hit timing information
 - \rightarrow tighter cuts possible on cluster timing
- ► Example: $e^+e^- \rightarrow t\bar{t}H \rightarrow WbW\bar{b}H \rightarrow q\bar{q}b\tau v\bar{b}b\bar{b}$ at 1.4 TeV

Before p_{T} and timing cuts

Reduce out-of-time background

- ▶ Use combined *p*_T and timing cuts to reduce out-of-time background
 - Cuts optimised for detector regions
 - Cluster timing by combining hit timing information
 - \rightarrow tighter cuts possible on cluster timing
- ► Example: $e^+e^- \rightarrow t\bar{t}H \rightarrow WbW\bar{b}H \rightarrow q\bar{q}b\tau v\bar{b}b\bar{b}$ at 1.4 TeV

After p_{T} and timing cuts

CLIC detector performance: examples

 For tracks down to 600 MeV: Detector and tracking algorithm perform with 100% efficiency, effect of background overlay is small

Electron ID efficiency

- Electrons above 20 GeV identified with in 90–95%
- Background causes efficiency loss by 5%