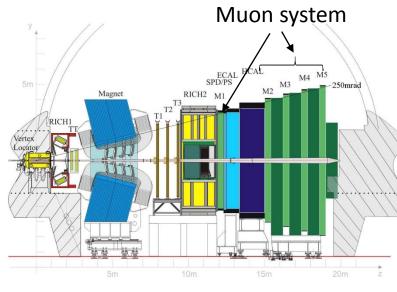
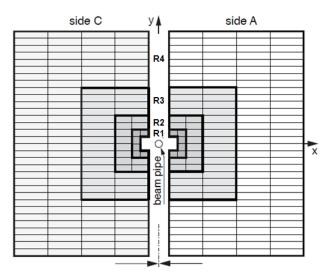


The μ-RWELL detector for the Muon System Upgrade

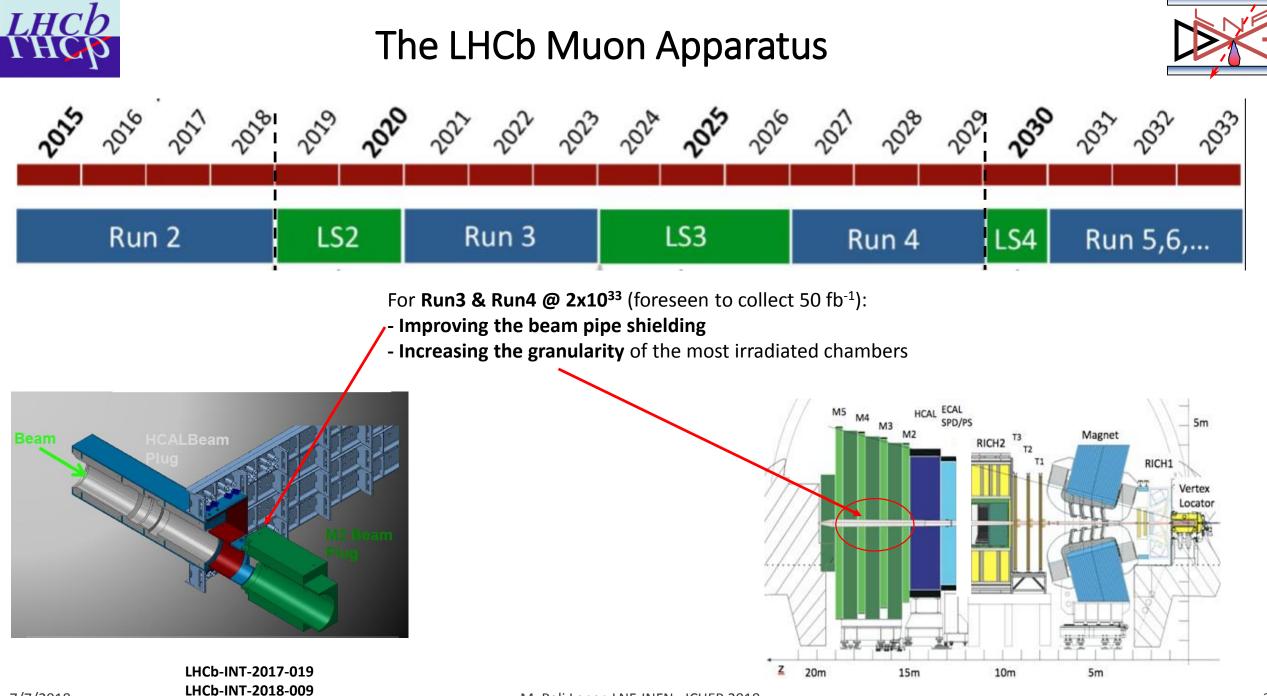
M. Poli Lener on behalf of LHCb Collaboration Laboratori Nazionali di Frascati - INFN

The LHCb Muon Apparatus



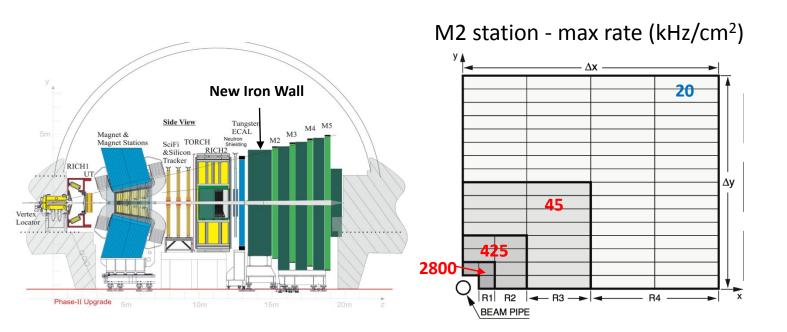

The Muon system has performed well in Run1 & Run2 @ 1-4x10³² (8 fb⁻¹ collected) → tracking inefficiency from dead time at level of 1 % in Run1 and 2 % in Run2

Increase in luminosity has consequence


- large increase in dead time induced inefficiency (in most region of the detector the reconstructed hits are obtained by crossing large area X & Y strips)
- **increased** rate of **ghost hits** from accidental crossing of X-Y channels
- increased pion misidentification

Current LHCb detector

Muon system: 5 stations x 4 regions


M. Poli Lener, LNF-INFN - ICHEP 2018

The LHCb Muon Apparatus

For Run5 & Run 6 @ 2x10³⁴ (foreseen to collect 300 fb⁻¹):

- Replace the HCAL with with a new Iron Wall
- Install new detectors on the Muon apparatus

Muon Detector requirements:

- Rate up to 3 MHz/cm2
- Efficiency for single gap > 95% within a BX (25 ns)
- Long stability up to 6 C/cm2 acc. charge in 10 y of operation
- Pad cluster size < 1.2

The μ-RWELL detector seems to be a good candidate for both low and high rate regions of the Muon System

The μ -RWELL

The R&D on μ -RWELL is mainly motivated by the wish of improving the Micro-Pattern Gaseous Detectors (MPDG) technology in terms of

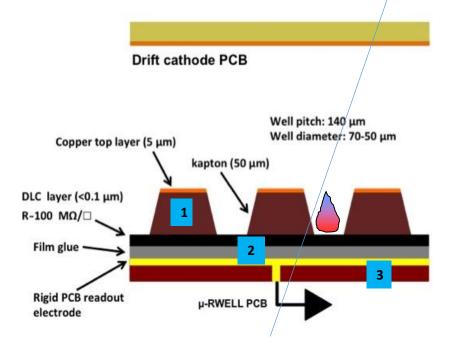
- stability under heavy irradiation (discharge suppression)
- construction technology (simplifying the assembly)
- Technology Transfer to industry (mass production)

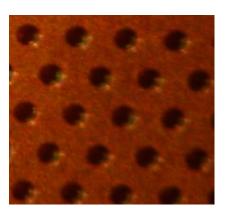
a MUST for **very large scale applications** in fundamental research at the future colliders as well as for technology dissemination beyond HEP

The original idea was conceived in 2009 @ LNF during the construction of the Cylindrical-GEM, to try to find a way to simplifying as much as possible the construction of the CGEM and its toolings. Only in the 2014 we really started a systematic study of this new technology ^(*) in collaboration with Rui de Oliveira

^(*) G. Bencivenni et al., "The micro-Resistive WELL detector: a compact spark-protected single amplification-stage MPGD", 2015_JINST_10_P02008

The µ-RWELL: the detector architecture

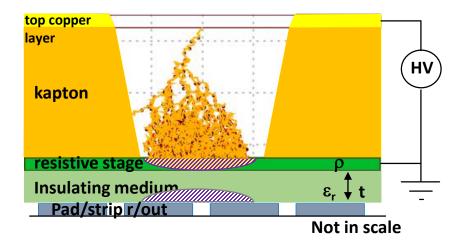



The μ-RWELL is composed of only two elements: the μ-RWELL_PCB and the cathode

The **µ-RWELL_PCB**, the core of the detector, is realized by coupling:

- 1. a WELL patterned kapton foil as amplification stage
- 2. a **resistive stage**^(*) for discharge suppression & current evacuation:
 - Low Rate Scheme (LRS) <100 kHz/cm²: resistive layer grounded on the detector edge
 - High Rate Scheme (HRS) >1 MHz/cm²: more sophisticated resistive scheme (double DLC layers connected through vias to ground or a single DLC layer with a conductive grid at the bottom)
- 3. a standard readout PCB

(*) DLC = Diamond Like Carbon highly mechanical & chemical resistant

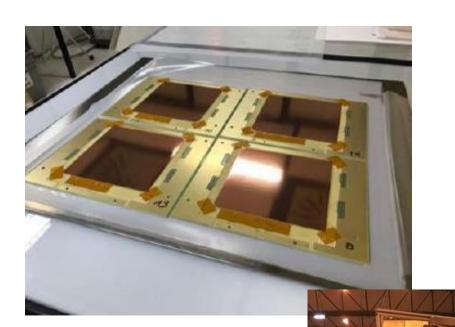

Principle of operation

Applying a suitable voltage between **top copper layer and DLC** the "WELL" acts as multiplication channel for the ionization.

The charge induced on the resistive foil is dispersed with a *time constant*, $\tau = \rho C$, determined by

• the *surface resistivity,* ho

- the *capacitance per unit area*, which depends on the **distance between the resistive foil** and the pad/strip readout plane, t
- the *dielectric constant* of the insulating medium, \mathcal{E}_r [M.S. Dixit et al., NIMA 566 (2006) 281]
- The main effect of the introduction of the resistive stage is the suppression of the transition from streamer to spark
- As a drawback, the capability to stand high particle fluxes is reduced, but an appropriate grounding of the resistive layer with a suitable pitch solves this problem (see High Rate scheme)



Technology Transfer to Industry

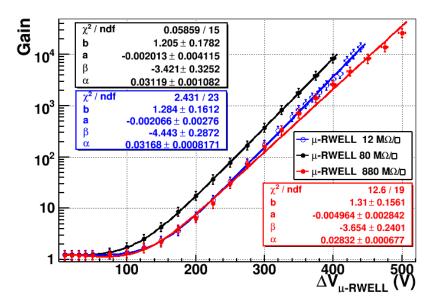
The engineering and industrialization of the μ -RWELL technology is one of the crucial ingredient for future applications. Transferring the manufacturing process to industry will allow a cost-effective mass production: a must for the construction of muon systems at future HEP Colliders

Manufacturing process of the single resistive layer has been already tested at the ELTOS SpA (<u>http://www.eltos.it</u>) for the Low Rate Scheme

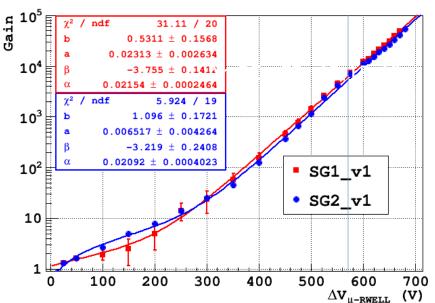
In the framework of the **CMS-Phase2 muon upgrade** ^(*) different prototypes of **small/large size Low Rate Scheme μ-RWELLs** has been built at ELTOS (**1.2x0.5m² & 1.9x1.2m²**) and

→ Prototypes successfully tested at CERN (detector efficiency > 98% & rate capability up to 40 kHz/cm²)

^(*) Collaboration with CMS-Muon people:

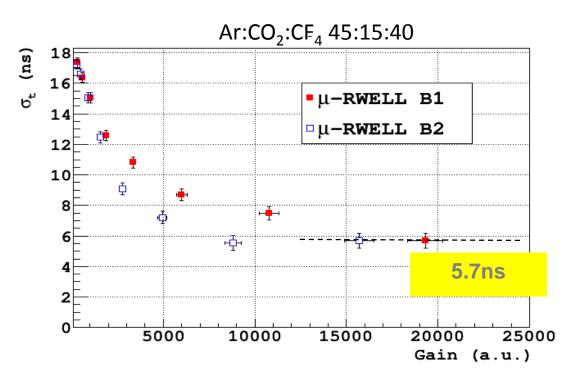

L. Benussi, L. Borgonovi, P. Giacomelli, A. Ranieri, M. Ressegotti, I. Vai, V. Valentino

Detector Gain



Ar/iC₄H₁₀= 90/10

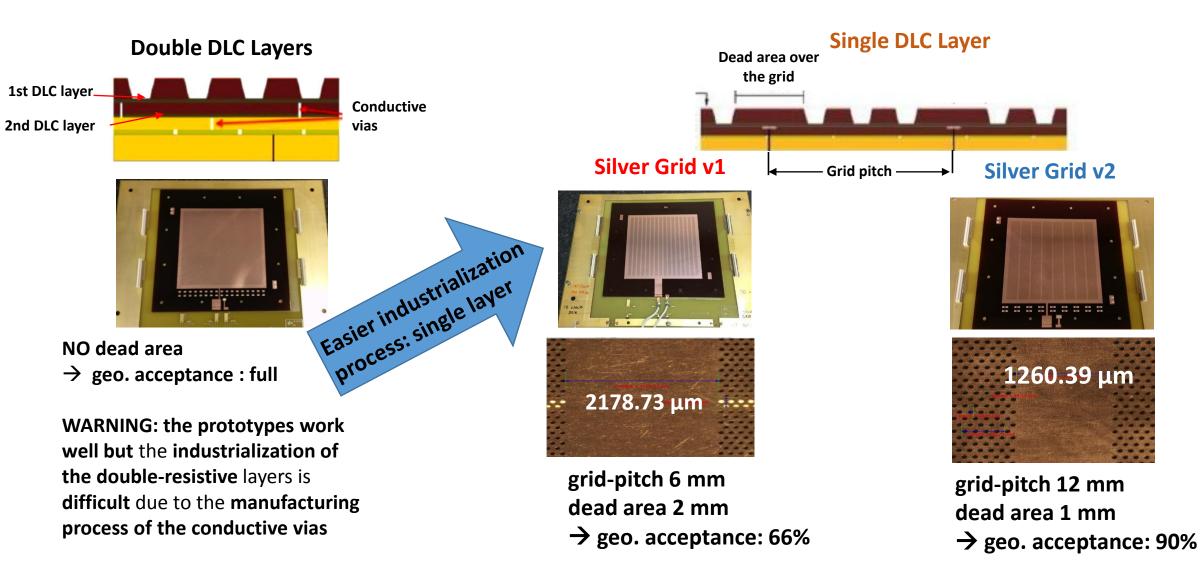

Some recent prototypes achieved a Gain ~10⁵ in $Ar/CO_2/CF_4 = 45/15/40$


Prototypes with different resistivity have been tested with **X-Rays** (5.9 keV), with Ar/iC_4H_{10} = 90/10 gas mixture, and characterized by measuring the gas gain in current mode.

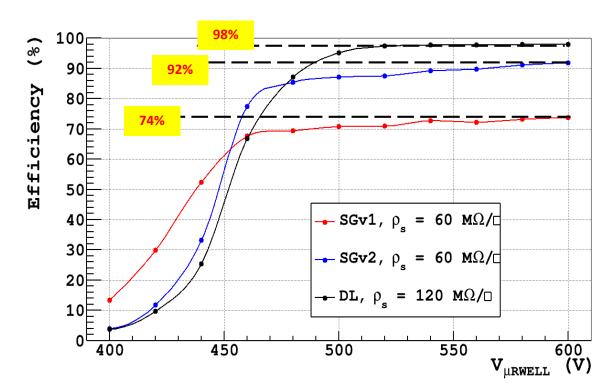
Ar/CO₂/CF₄= 45/15/40

Time Performance

To achieve a high efficiency in the bunch-crossing (25ns), the detector requires a high time resolution: the **use of a fast and high primary ionization gas mixture** (Ar/CO2/CF4) together with **the fast electronics VFAT2** ^(*) allow to measure a **time resolution of 5.7 ns**. **No ultimate** μ -**RWELL time resolution due to FEE saturation effect** Measurements done with GEM by LHCb group gave $\sigma_t = 4.5$ ns with VTX chip, constant fraction discriminator^(**).


(*) P. Aspell "VFAT2: A front-end system on chip providing fast trigger information, digitized data storage and formatting for the charge sensitive readout of multi-channel silicon and gas particle detectors", Proceedings of TWEPP-07, (2007) (**) G. Bencivenni et al, "Performance of a triple-GEM detector for high rate charged particle triggering", NIM A 494 (2002) 156

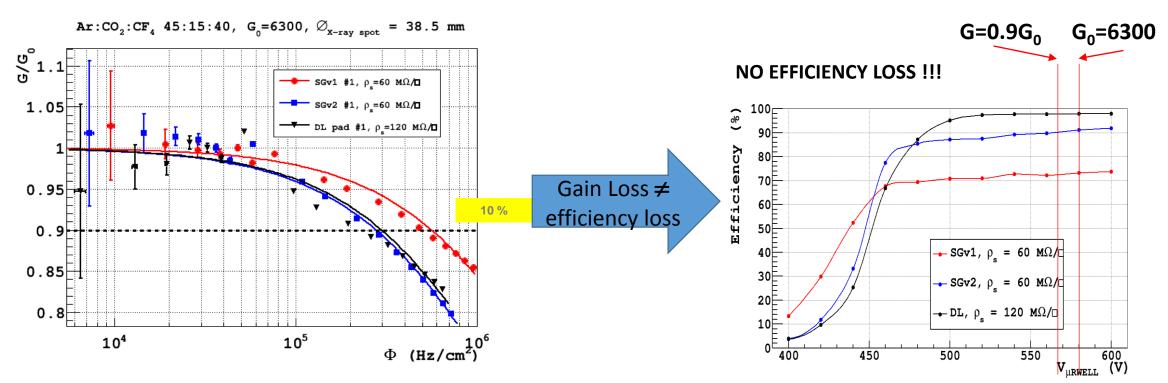
The High Rate versions



The idea is to reduce the path of the current on the resistive stage with a sort of 3-dimensional evacuation scheme (Double DLC layers) or an optimized 2-dimensional one (Single DLC layer)

HR layouts performance

 $Ar:CO_2:CF_4$ 45:15:40 – Muon Beam - Ed = 3 kV/cm


As expected the **Double layers prototype** reaches **full tracking efficiency – 98%** (NO DEAD ZONE in the amplification stage). The **Silver Grid v1 & v2** show lower efficiency **(74% -92%) BUT higher than their geometrical acceptance (66% and 90%** respectively), thanks to the **efficient electron collection mechanism** that **reduce the effective dead zone.**

→ With the optimized SG2 version (SG2⁺⁺ w/95% geometrical acceptance) we hope to achieve almost full efficiency (97-98%).

Gain drop measurement w/5.9 X-ray

The **gain drop** is due to the **Ohmic effect** on the resistive layer and depends on the **evacuation stage and DLC surface resistivity.**

Since the primary ionization of 5.9 keV is ~7 times larger than a m.i.p and accepting a 10% gain drop, a rate capability of few MHz/cm² is achieved It must be stressed that **10% drop of G₀=6300** allows still to operate the detector at full efficiency.

Recent R&D on a novel MPGD architectures lead to the introduction of the μ -RWELL in the MPGDs world.

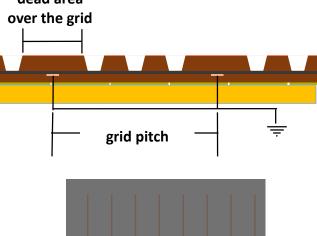
The μ-RWELL is a very promising technology showing important advantages for large area applications in harsh environment: the detector is compact, simple to assemble and intrinsically spark-protected

- gas gain > 10⁴
- rate capability > 1 MHz/cm² (HR version)
- time resolution ~ 5.7 ns

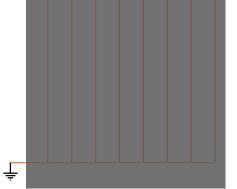
R&D/engineering in progress:

- Low rate (<100kHz/cm²) :
 - small and large area prototypes built and extensively tested
 - <u>Technological Transfer to industry is ongoing with good achievements</u>
- High rate (>1 MHz/cm²):
 - R&D well advanced, completed by end of 2018
 - prototypes show very good performance

A new highly-integrated frontend ASIC is required for the Phase II Upgrade


Thanks for your attention

New ideas for the HR version


The aim is **to maintain a very short path for current moving on the resistive layer**, while **simplifying the construction process.**

Two ideas are now under development: **silver grid and resistive grid on the bottom of the DLC**

High Rate scheme	Resistivity [MΩ/□]	Dead Area over grid	Grid Pitch	Geometrical efficiency [%]	Туре
Silver Grid 1 (SG1)	60-70	2 mm	6 mm	66	conductive grid
Silver Grid 2 (SG2)	60-70	1,2 mm	12 mm	90	conductive grid
Resistive Grid (RG)	60-70	-	6 mm	Full	resistive grid

The conductive grid on the bottom of the amplification stage can induce instabilities due to discharges over the DLC surface, requiring for the introduction of a dead zone on the amplification stage. This is not the case for the resistive grid scheme.

The LHCb Muon Apparatus

The Muon system has performed well in Run1 & Run2 @ 1-4x10³² (8 fb⁻¹ collected)

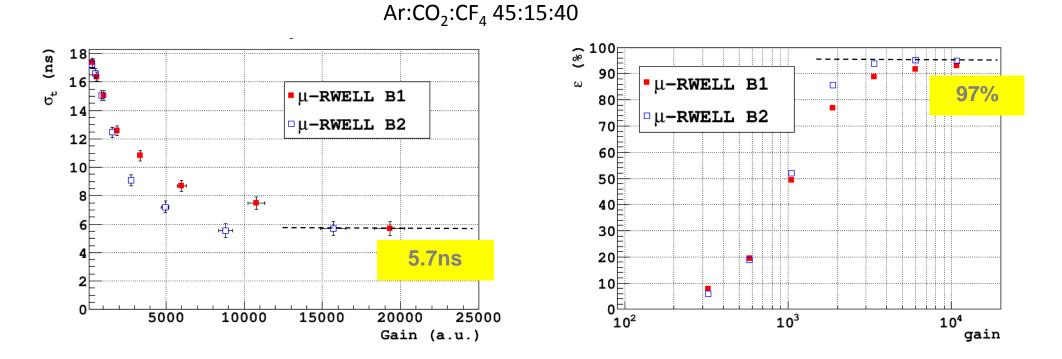
→ tracking inefficiency from dead time at level of 1 % in Run1 and 2 % in Run2

Increase in luminosity has conseguence

- large increase in dead time induced inefficiency (in most region of the detector the recostructed hits are obtained by crossing large area X & Y strips)
- increased rate of ghost hits from accidental crossing of X-Y channels
- increased pion misindentification

For Run3 & Run4 @ $2x10^{33}$ (foreseen to collect 50 fb⁻¹):

- **improving the beam pipe shielding** and **increasing the granularity** of the forward-inner chambers (M2R1, M2R2 & M3R1 – removing the OR of contiguous channels) will allow to reduce the **inefficiency from 25% to 4.5%**


For Run3 & Run4 @ 2x10³⁴ (foreseen to collect 300 fb⁻¹):

- **Replace the HCAL** with with **a new optimezed Iron Wall** and **install new detectors**, more radiation tollerant and with an order of magnitude higher readout granularity

Time Performance

A time resolution of 5.7 ns has been measured with a fast electronics (VFAT2). The saturation at 5.7 ns is dominated by the FEE. To be compared with past measurements done by our LHCb with GEM: σ_t = 4.5 ns with VTX chip and CF discriminator [G. Bencivenni et al., NIM A 494 (2002) 156]

Main detector features

The **µ-RWELL** is a **single-amplification stage**, intrinsically **spark protected** MPGD characterized by:

simple assembly procedure:

- only two components $\rightarrow \mu$ -RWELL_PCB + cathode
- no critical & time consuming **assembly** steps:
 - no gluing
 - *no stretching* (→ no stiff & large frames needed)
 - easy handling
- suitable for large area with PCB splicing technique w/small dead zone

• cost effective:

• 1 PCB r/o, 1 μ-RWELL foil, 1 DLC, 1 cathode and very low man-power

• easy to operate:

very simple HV supply → only 2 independent HV channels or a trivial passive divider (while 3GEM detector → 7 HV floating/channels)

The LHCb Muon Apparatus

The Muon system has performed well in

Run1 & Run2 @ 1-4x10³² (8 fb⁻¹ collected) \rightarrow tracking inefficiency from dead time at level of 1 % in Run1 and 2 % in Run2

Increase in luminosity has conseguence

- large increase in dead time induced inefficiency (in most region of the detector the recostructed hits are obtained by crossing large area X & Y strips)
- **increased** rate of **ghost hits** from accidental crossing of X-Y channels
- increased pion misindentification

For **Run3 & Run4 @ 2x10³³** (foreseen to collect 50 fb⁻¹): **Improving the beam pipe shielding** and **increasing the granularity** of the most irradited chambers

> For Run5 & Run 6 @ 2x10³⁴ (foreseen to collect 300 fb⁻¹): Replace the HCAL with with a new optimezed Iron Wall and install new detectors on the Muon apparatus, more radiation tollerant and with an order of magnitude higher readout granularity

Rates at 2x10³⁴

The following max rates for Phase II are obtained by scaling the Phase I extrapolation

kHz/cm ²		kHz/cm ²		kHz/cm ²		kHz/cm ²	
M2R1	2800	M3R1	1900	M4R1	650	M5R1	550
M2R2	425	M3R2	220	M4R2	85	M5R2	55
M2R3	45	M3R3	19	M4R3	9	M5R3	7
M2R4	20	M3R4	5	M4R4	3	M5R4	4

Detector requirements:

- Rate up to 3 MHz/cm2
- Efficiency for single gap > 95% within a BX (25 ns)
- Long stability up to 6 C/cm2 accumulated charge in 10 y of operation
- Pad cluster size < 1.2

The μ -RWELL detector seems to be a good candidate for both low and high rate regions of the muon system