The 20-inch PMT system for the JUNO experiment

Zhonghua Qin
(IHEP, Beijing)

On behalf of the JUNO collaboration
qinzhi@ihep.ac.cn
ICHEP2018, Jul. 4-11, Seoul
Outline

- The JUNO experiment
- The JUNO detector
- Overview of 20” PMT system
- 20” PMT Sensors
- Acceptance and testing of the PMT
- Test results of photon detection efficiency
- PMT high voltage divider
- PMT Potting
- PMT protection
- PMT installation
- Summary
the JUNO experiment

JUNO (Jiangmen Underground Neutrino Observatory) is located in Jiangmen city, Guangdong province, China:

- ~53km from the Yangjiang and Taishan NPP
- ~700m under ground

<table>
<thead>
<tr>
<th>NPP</th>
<th>Daya Bay</th>
<th>Huizhou</th>
<th>Lufeng</th>
<th>Yangjiang</th>
<th>Taishan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Operational</td>
<td>Planned</td>
<td>Planned</td>
<td>Under construction</td>
<td>Under construction</td>
</tr>
<tr>
<td>Power</td>
<td>17.4 GW</td>
<td>17.4 GW</td>
<td>17.4 GW</td>
<td>17.4 GW</td>
<td>18.4 GW</td>
</tr>
</tbody>
</table>

~ by 2020: 26.6 GW
the JUNO detector

- **Target:** 3%/E(MeV) energy resolution, largest liquid scintillator detector in the world
 - the central detector: 20kton liquid scintillator, **18000 20” PMTs** + 25000 3” PMTs;
 - the VETO detector: a top tracker of plastic scintillator walls + a water Cherenkov detector of 35kton ultra-pure water and **2000 20” PMTs**;
 - the calibration system: four complementary calibration methods

Central detector

- **Mechanical structure**
 - Acrylic sphere
 - Stainless-steel truss

- **PMT**
 - 18,000 20” PMTs
 - 25,000 3” PMTs

- **Liquid scintillator**
 - 20 kton LS

Calibration system

- ACU, ROV, etc.

VETO detector

- Top Tracker
 - 62 Plastic scintillator walls

- Water Cherenkov
 - 35 kt high-purity water
 - 2000 20” PMTs

- Acrylic sphere: Φ35.4m
- Stainless-steel struss: Φ40.1m
- Water pool: Φ43.5m
Overview of the 20” PMT system

- PMT sensors: totally 20000 20” PMTs
- PMT testing: acceptance test, parameter characterization
- PMT voltage divider: PMT high voltage supply and operating parameter optimization
- PMT potting: waterproof sealing of divider, pin and cable;
- PMT protection: prevent implosion chain reaction
- PMT integration/installation
20” PMT Sensors

- 15000 MCP-PMTs are from NNVT (North Night Vision of Technology CO., LTD, China).
- 5000 dynode-PMTs are from Hamamatsu company.

- the JUNO specifications

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>unit</th>
<th>MCP-PMT (NNVT) Typical value, limit</th>
<th>R12860 (Hamamatsu) Typical value, limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection Efficiency (QE*CE)</td>
<td>%</td>
<td>27%, >24%</td>
<td>27%, >24%</td>
</tr>
<tr>
<td>P/V of SPE</td>
<td></td>
<td>3.5, > 2.8</td>
<td>3, > 2.5</td>
</tr>
<tr>
<td>TTS on the top point</td>
<td>ns</td>
<td>~12, < 15</td>
<td>2.7, < 3.5</td>
</tr>
<tr>
<td>Rise time/ Fall time</td>
<td>ns</td>
<td>R3, F12</td>
<td>R5,F9</td>
</tr>
<tr>
<td>Anode Dark Count</td>
<td>Hz</td>
<td>20K, < 30K</td>
<td>10K, < 50K</td>
</tr>
<tr>
<td>After Pulse Rate</td>
<td>%</td>
<td>1, <2</td>
<td>10, < 15</td>
</tr>
<tr>
<td>Radioactivity of glass</td>
<td>ppb</td>
<td>238U:50 232Th:50 40K: 20</td>
<td>238U:400 232Th:400 40K: 40</td>
</tr>
</tbody>
</table>
Acceptance and testing of 20” PMT

- A test and storage warehouse of 4500m² has been prepared near to JUNO site.
- JUNO has received about 10000 PMTs: 6K from NNVT + 4K from Hamamatsu
- Visual inspection and performance test are ongoing:

 7k finished for visual inspection, and 5k finished for performance test

Storage of received PMTs

PMT visual inspection

Batch test of 72 PMTs in two container systems

photocathode scanning test
Test results on photon detection efficiency (PDE)

- For the early delivered PMTs (batch #1 to #17)

 - PDE in average, 30.1% in average, 35% for the highest

 - Averaged PDE: 27.9%
 - NNVT: 27.5%
 - Hamamatsu: 28.3%

- For the newly delivered NNVT PMTs (Batch #18, 253 pieces)

 - PDE is largely improved: 30.1% in average, 35% for the highest

 - Data from NNVT (all 253 PMTs): 30.1%

 - Confirmed by JUNO testing (100 PMTs sampled): ~32%

Refers to the talks “characterization of the 20-inch PMT for the JUNO Central detector” and “The R&D, mass production of the 20 inch PMT for neutrino detector” for more information.
High voltage divider

- The final design finished, mass production is under preparation

 - Two types: MCP PMT and dynode PMT
 - DC current & HV: <300µA@3000V, Gain 10^7, Positive HV,
 - Dynamic range & Linearity
 - Full dynamic range: 4000 p.e
 - Non-linearity: <10% for 1000 p.e;
 - Overshoot and ringing: <1%
 - Smooth signal shape: Rise/Falling time: 3ns/12ns
 - Reliability: failure rate <0.1%/6 year

Flasher rate is significantly reduced by improvement on soldering

- Original flasher rate: 0.1@1500v to 1Hz@3000v
- After improvement: 10^{-4}Hz @ 3000V

see poster D_71 for more information
PMT potting

• The final design is finished with multiple waterproof layers;
 - stainless-steel shell acts as a pressure-resistant container;
 - epoxy/Polyurethane is used for structural adhesion between shell and glass;
 - Butyl tape is for the first layer of water sealing;

• 200 prototypes have been produced and tested;
 - 100 samples each for MCP PMT and Hamamatsu PMT
 - temperature cycling test
 - Long-term water-tight test (half a year up to now)
 - Accelerated aging test
 - No leaking observed so far

• Start potting of the real PMTs from Jan. 2019
PMT implosion Protection (1)

- **Requirement**
 - Prevent chain reaction triggered by one PMT implosion;

- **Study with naked PMT**

 - **Design of protective cover:**
 - Acrylic + stainless steel
 - Good light transparency, least possible light blocking;
 - Thinnest possible, minimize the impact on PMT coverage;
 - Compatible with pure water and low radioactivity;
 - Strong support from bottom cover;

see also poster # D_79 for more information
PMT implosion Protection (2)

- **Protective cover prototyping**
 - totally produced more than 60 acrylic covers and stainless-steel covers;
 - done by injection molding for the acrylic and by stamping for the stainless-steel;

- **Implosion test with multiple PMTS**
 - tested many times with 2 PMTs, 3 PMTs, ..., 7 PMTs with different cover thickness;
 - 9 ~11mm non-uniformly thick acrylic cover and 2mm thick stainless-steel cover is the current choice;
1. JUNO requirement on PMT Coverage:
 > 75%
 → distance between PMT covers: 3 mm;
 • Diameter of PMT: 508mm;
 • Thickness of cover: 9mm
 • gap between cover and PMT: 2mm
 -> Clearance between PMT covers: 3mm
 -> PMT center to center: 533mm;
 → lose 0.25% coverage if increasing distance by 1mm;

2. A possible layout reaches 17510 PMTs, coverage is 75.1% - a demo. was constructed

3. Final installation of PMT on the JUNO detector is under design - bidding of the installation company was finished
Summary

- 20000 20” PMTs will be used for the JUNO experiment;
- About 10000 20” PMTs have been delivered:
 - 6000 MCP PMTs (NNVT) and 4000 dynode PMTs (Hamamatsu);
- Photon detection efficiency of the delivered PMTs is about 27.9%;
- Newly produced NNVT PMTs has improved the PDE from 27.5% to 30.1%, reaching 35% for the highest;
- PMT high voltage divider, potting and protection has finished the final design and prototyping, mass production is under preparation (need ~2 years for production);
- PMT integration is required to reach 75% optical coverage;
- PMT related work is scheduled to be finished in 2020;