DETECTOR STATUS OF AMORE-PILOT EXPERIMENT

Inwook Kim

On behalf of AMoRE-Collaboration

Advanced Advanced Mo-based Rare process Experiment

An experiment to investigate the Majorana nature of neutrino and hence measure the effective Majorana neutrino mass by searching for the **NEUTRINOLESS DOUBLE-BETA DECAY** of Molybdenum-100 using scintillating low temperature bolometers

Neutrinoless Double Beta Decay (0nbb)

Onbb search enables to...

- Probe Majorana nature of neutrinos
- Measure the absolute effective Majorana mass of neutrinos
- Check the Lepton number conservation

...Possibility of physics beyond the SM!

Searching for Onbb

Detection strategies:

- Large exposure
 - ✓ Large mass scale possible
 - ✓ High-abundance isotope
 - High detection efficiency
- Low background
 - ✓ Material selection
 - ✓ Shieldings from muons and external
 - ✓ High Q-value (to lower background)
 - ✓ Good energy resolution

For sizeable background case:

For "zero background" case: (Expected background rate in ROI < 1 for given *M T*)

$$\lim T_{1/2}^{0\nu}(\exp) = (\ln 2) N_a \frac{a}{A} \varepsilon \frac{MT}{n_{CL}}$$

Advanced Mo-based Rare process Experiment

- ✤ Onbb source: ¹⁰⁰Mo
- Absorber: Scintillating Mo-based crystal
- Detection technique: Low temperature detectors (MMCs @ ~10 mK)
- Laboratory type: Underground experiment

AMoRE-Phase II Concept design

Advanced Mo-based Rare process Experiment

Large exposure

- Large mass scale possible
- High-abundance isotope
- High detection efficiency

Low background

- Material selection
- Shieldings from muons and external
- High Q-value (to lower background)
- Good energy resolution

AMoRE-Phase II Concept design

6

Advanced Mo-based Rare process Experiment

Large exposure

- Large mass scale possible
- High-abundance isotope
- High detection efficiency

Low background

- Material selection
- Shieldings from muons and external
- High Q-value (to lower background)
- Good energy resolution

Candidates	Q _{ββ} (MeV)	N.A. (%)
⁴⁸ Ca→ ⁴⁸ Ti	4.271	0.187
⁷⁶ Ge→ ⁷⁶ Se	2.040	7.8
⁸² Se→ ⁸² Kr	2.995	9.2
⁹⁶ Zr→ ⁹⁶ Mo	3.350	2.8
¹⁰⁰ Mo→ ¹⁰⁰ Ru	3.034	9.6
¹¹⁰ Pd→ ¹¹⁰ Cd	2.013	11.8
¹¹⁶ Cd→ ¹¹⁶ Sn	2.802	7.5
$^{124}\mathrm{Sn} \rightarrow ^{124}\mathrm{Te}$	2.228	5.64
¹³⁰ Te→ ¹³⁰ Xe	2.533	34.5
¹³⁶ Xe→ ¹³⁶ Ba	2.479	8.9
¹⁵⁰ Nd→ ¹⁵⁰ Sm	3.367	5.6

Phys. Rev. C 53, 695 (1996)

AMoRE Detector Concepts MMC 150- 241 Am α spectrum Light Detector Counts / 0.2 keV $I_0 + \delta I$ 100 High energy resolution Corresponding Gaussian width 50 0.86+0.05 keV FWHM Scintillating **Crystal** 5400 5440 5460 5480 5380 5420 5500 Energy (keV) SE01 Rise Time Cut Phonon Reflective film 1.8 -2-σ Band Detector (se 1.78) 1.76 E 1.74 Good bgd rejection power eg 1.72 1.7 1.68 AMoRE utilizes... 2000 4000 6000 8000 10000 Energy (keV Good energy resolution (~few keV) Cryogenic detection method ~10mK temperature ✓ Metallic Magnetic Calorimeter (MMC) as Fast response, good energy resolution (~ few keV) temperature sensor XMoOx(XMO) crystals as both the source and the High detection efficiency (~80%) absorber Phonon-photon simultaneous detection technique Good bgd rejection power

8

Advanced Mo-based Rare process Experiment

AMoRE-PILOT Experiment

The commissioning phase of AMoRE experiment at the Y2L underground laboratory

Purposes:

- 1. To check overall status of detector performances, cryostat, shielding, DAQ system and all other conditions.
- 2. To identify and to remove possible sources of backgrounds

Period:

2015.08 ~ 2018.08 (Expected)

Conditions:

- 1. Base temperature @ 10-30 mK
- 2. 700-meter-deep Yangyang underground laboratory (Y2L)
- 3. Six ⁴⁰Ca¹⁰⁰MoO₄ crystals, ~1.9 kg (grown at JSC "Fomos-Materials")

6 Crystals

AMoRE-Pilot Setup

Detector module

Detachable light detector **Reflective film** (Crystal inside) Heat detector at the bottom Light Detector Scintillating Crystal Phonon Detector

MMC

Detector tower

Installed in the cryostat

11

Background Reduction

Muon-coincidence tagging

700-meter-deep Yangyang underground laboratory (Y2L)

15cm thick lead shield

Low-background lead (Ancient lead)

High radiopurity copper

Muon veto system

AMoRE-Pilot runs

- Run1: Pilot installation of 10 mK measurement for 5 crystals (⁴⁰Ca¹⁰⁰MoO₄)
- Run2: Noise improvement (low & high freq.) (Detector module design)
- Run3: New IVC installation (For background reduction)
- Run4: Noise improvement (low freq.) (Mass-spring damper)
- Run5: Muon veto, Noise improvement (low freq.) (Spring-suspended still) (6 crystals, 4 month run.)
- Run6: Main background source removal, Noise improvement (low freq.) (Now!)

Two-Stage Vibration Isolation

detector

Leiden Spin Imaging's Spring Suspended Still (SSS) damper [with Eddy currents]

> Mass Spring damper (MSD)

thermal link

Two-Stage Vibration Isolation

Leiden Spin Imaging's Spring Suspended Still (SSS) damper [with Eddy currents]

> Mass Spring damper (MSD)

Run-5: Installed, not properly operated **Run-6: In full operation**

Improvements

Improved background discrimination power

Improvements

Run Number	FWHM energy resolution @ 2.615 MeV averaged over the detector modules (keV)	Remarks
1	43	First installation
2	22	Detector design improved
3	N/A	New IVC (to reduce bgd)
4	13	Mass-spring damper
5	11	Spring-suspended still (improper)
6	To be calculated	Spring-suspended still (Full) Stabilization heater

Improved Energy Resolution

Further Improvements (Run-6)

Background sources removed

Further Improvements (Run-6)

• Dr. Y. S. Yoon (7th. Jul. (Sat). 10:00 a.m, Neutrino session)

19

Future Plan for AMoRE

Summary

- AMoRE searches for neutrinoless double beta decay (0nbb) of 100Mo using Mobased scintillating crystals and MMC sensors at milli-kelvin temperatures
- Throughout the AMoRE-Pilot runs, several upgrades (detector design upgrades, vibration reduction system, muon veto system) were made to improve noise and background conditions
- Energy resolution, background rejection power and the background level have been improved dramatically from the first run
- Run-6 is currently running with 6 crystals (total mass ~1.9 kg), two vibration damping systems and a muon veto system
- The main background sources were identified in Run-5, and have been removed from the detectors in Run-6
- Scaling-up for AMoRE-I to ~ 6 kg is in preparation: 13 ⁴⁰Ca¹⁰⁰MoO₄ crystals and 5 others types of crystals (LMO, PMO, NMO etc.)