

Ageing and high rate studies on resistive Micromegas at the CERN Gamma Irradiation Facility

Edoardo Farina

CERN & University of Pavia

B. Alvarez Gonzalez, J. Bortfeldt, P. Iengo, J. Samarati, G. Sekhniaidze, O. Sidiropoulou, J. Wotschack

ICHEP 2018, SEOUL

7 July 2018

Gamma Irradiation Facility (GIF++) as ageing facility

Detector response to long term irradiation and high rate capability are key elements for new muons detectors especially in view of High-Luminosity LHC

- GIF++ at CERN combines a high intensity photon source (14 TBq Cesium source) with a muon beam
- The source produces 662 keV photons (50% of the flux, the other 50% are about equally distributed between ≈100 keV and 662 keV)
- The particle flux can be modified, with absorbers filters shielding the source

A current of about 5*10⁷ photons/cm² is expected at the reference position closest to the source

D:Pfeiffer et al:, "The radiation field in the Gamma Irradiation Facility GIF++ at CERN", arXiv:1611.00299v1

Description of the setup

Two *bulk* resistive Micromegas prototypes (T5, T8) have been installed in GIF++ in 2015:

- Active area of 10x10 cm²
- 5 mm drift, ~100 μm amplification gaps
- The copper readout strips (pitch 0.4 mm) are covered by a 50 μm thick Kapton foil carrying resistive strips (0.5-1 MΩ/cm²)
- Mesh consisting of 18 μm wires, with opening of 45 μm

The aim was to accumulate at least 0.2 C/cm² (equivalent to ~10 years for inner muon detectors at HL-LHC) to evaluate the impact of long term irradiation on the detector

The setup has been mounted as close as possibile to the source to maximise the photon rate

Particle rate estimation and sensitivity to photons

Vo	ltage	[V]
	<u> </u>	

Att factor	Rate from detector	Simulation	Sensitivity
1	115000	7.70E + 07	0.001494
1.5	99130	5.21E + 07	0.001901
2.2	68052	3.73E + 07	0.001827
4.6	34590	1.88E + 07	0.001839
10	18158	$1.06E{+}07$	0.001712
100	2536	1.49E + 06	0.001699

Detector performance at high rate

Long term irradiation

Accumulated charge has been estimated monitoring the current on the detectors

More than 0.3 C/cm² have been collected since May 2015

Performance tests have been performed in May 2017 (after 0.2 C/cm²) and January 2018 (after 0.3 C/cm²)

Efficiency before, during and after irradiation

The efficiency of the detectors has been measured by means of cosmic muons in the lab and in test-beams.

The efficiency is defined by the presence of a cluster of strips with a signal around the expected muon position as obtained from the tracking chambers

Detector gain before, during and after irradiation

Current monitoring

The current has been monitored:

- Detector position has been changed several times because of test-beams, tests in the lab, facility needs
- Irradiation time intervals where conditions are unchanged (same position/distance) are considered
- Current of about 2 µA with source fully open and at detector working point

Conclusions

Two *bulk* resistive strips Micromegas prototypes have been exposed to intense photon source since 2015 at GIF++ facility at CERN:

- A sensitivity of 1.7*10⁻³ to the GIF++ photon spectrum has been obtained by comparing the converted photons with the simulated flux reaching the detectors
- Spatial resolution and cluster charge distributions have been measured under different background rates ranging from 0 to 70 kHz/cm²
- 0.3 C/cm² has been collected in total
- Detector efficiency to muons and gain have been measured three times, once before irradiation, once after accumulation 0.2 C/cm² and finally after 0.3 C/cm²: no detectable degradation of the performance has been observed
- Current behaviour over time does not show variations throughout the whole irradiation period
- Similar study on Micromegas prototype has been performed* with similar outcome

*) J. Galan et al., Aging studies of Micromegas prototypes for the HL-LHC, JINST 7 (2012) C01041

Backup

