

Commissioning of liquid Xe detector with VUV-MPPC readout for MEG II experiment

Shinji Ogawa, K.leki, T.lwamoto, S.Kobayashi, N.Matsuzawa, S.Mihara, T.Mori, H.Nishiguchi, R.Onda, W.Ootani

on behalf of the MEG II Collaboration

Table of contents

1. LXe γ-ray detector in MEG II experiment

2. Commissioning of LXe γ-ray detector

MEG II experiment

Searches for a cLFV decay of muon, $\mu \rightarrow e\gamma$.

- Clear evidence of BSM.
- Detectable branching ratio (O(10⁻¹² ~ 10⁻¹⁵)) is predicted by some BSM models.

Upgrade of MEG experiment

- Doubled μ⁺ beam intensity
- Doubled detection efficiency
- Resolutions of all detectors will become half
- Expected sensitivity of MEG II : 6 × 10⁻¹⁴
 - In MEG. Sensitivity: 5.3 × 10⁻¹³, Upper Limit (90% C.L.): 4.2 × 10⁻¹³

Liquid Xe γ-ray detector

- To detect monochromatic γ -ray from $\mu \rightarrow e\gamma$ (E $\gamma = m_{\mu} / 2 = 52.8$ MeV).
- Measuring the hit position, energy, and timing of γ-ray with good resolution is important to efficiently suppress the accidental background.

Radiative

decay

Gradient magnetic

field

LXe γ -ray detector in MEG

LXe γ -ray detector was successfully operated in the MEG experiment.

- ●900 ℓ LXe.
- Scintillation light readout by 846 PMTs

Advantages of LXe

- High light yield (~75% of Nal)
- Fast (τ_{decay} = 45ns for γ -ray)
- High stopping power (X₀=2.8cm)
- Uniform (liquid)

Disadvantages of LXe

- VUV (Vacuum Ultraviolet) scintillation light (λ=175nm)
- High purity is needed
- Low temperature (165K) is required

Hamamatsu R9869

16% QE for λ=175nm

LXe y-ray detector in MEG II

We have **upgraded LXe detector for MEG** II to significantly improve the performance.

We have replaced 216 2-inch PMTs on the γ -entrance face with 4092 12 × 12 mm² MPPCs.

- Better position resolution from higher granularity.
- Improved energy resolution from better uniformity of scintillation readout.
- Better timing resolution

from TOF estimation with better accuracy and larger statistics from larger sensitive area.

Increased detection efficiency

from reduced material of the γ -entrance face.

	MEG (measured)	MEG II (simulated)	
σ (position)	~5 mm	~2.5 mm] iı
σ (energy)	~2%	0.7 - 1.5%	а
σ (timing)	67 ps	50 - 70 ps	•
Efficiency	63%	69%	

improve by a factor of **2**!

12 × 12 mm²

~1 m² is covered by MPPC !

MPPC

VUV-sensitive large area MPPC

MPPC for MEG II LXe detector has been developed in collaboration with Hamamatsu Photonics K.K.

VUV-sensitive (PDE (λ=175nm) > 15%)

- Scintillation light of Xe is in VUV range
- Realized by removing the protection layer of resin, optimizing optical matching b/w LXe and sensor surface, and thinning contact layer.

Large sensitive area $(12 \times 12 \text{ mm}^2)$

- To keep the number of readout channels manageable.
- Discrete array of four 6 × 6 mm² chips
- Four chips connected in series at readout PCB to reduce long time constant.

Hamamatsu S10943-4372

6

Detector construction

Table of contents

1. LXe γ-ray detector in MEG II experiment

2. Commissioning of LXe γ-ray detector

Detector commissioning in 2017

Commissioning of our detector has been started from April in 2017.

Goal in 2017: Pilot run with muon beam in December.

LXe transfer & purification

- LXe has been transferred to the detector.
- After the purification of a few month, sufficient light yield of LXe has been achieved by the purification.
 - Molecular sieves (LXe circulation) + getter (gXe circulation)

MPPC calibration

- MPPC gain and PDE has been measured, and sufficient performance has been confirmed
 - Gain : Based on 1 p.e. peak from weak LED light
 - PDE : Based on detected number of p.e. from calibration source inside the detector. (LXe scintillation light from ²⁴¹Am)
- Stability of those performance has been confirmed for a month.

Pilot run with muon beam

Gamma-ray data taking was successfully performed.

- Gamma-rays (~45 MeV) mainly from radiative muon decay is obtained.
- Triggered on sum of MPPC waveform.
- Use WaveDREAM (electronics developed for MEG II) for readout.
 - Due to the limited number of available ch, only 25% of detector was read out. (960 MPPCs + 192 PMTs)

Pilot run with muon beam

13

"COMMISSIONING OF LIQUID XE DETECTOR WITH VUV-MPPC READOUT FOR MEG II EXPERIMENT", SHINJI OGAWA, ICHEP 2018, SEOUL, KOREA

Timing resolution

Timing resolution for 50MeV γ -ray has been estimated.

Gamma hit timing is reconstructed from the timing of waveforms from each photo-sensors.

$$\chi^{2} = \sum_{MPPC,PMT} \left(\frac{t_{pm} - t_{walk} - t_{prop} - t_{offset} - t_{\gamma}}{\sigma} \right)^{2}$$

Time info from each MPPC, PMT Gamma hit timing
Calibration parameters (fitting parameter)

MPPC waveforms are more sensitive to the noise than PMT.
 Offline noise reduction has been developed.

Even-odd resolution is estimated.

Obtained 44 ps resolution@ 50MeV γ

- Better than MEG II design value.
 → 15% sensitivity improvement
- Consistent with MC.

- reconstructed Ev We found it difficult to estimate energy resolution from this data.
 - Limited number of readout channel.
 - Analysis is not yet optimal. (Needs γ -ray calibration source)
 - Low-frequency noise from readout electronics.

Noise effect is ~ 0.5% of the signal (by reading out 1/4 of whole detector)

10

- Looks like due to the coherent noise.
 - \rightarrow Can be ~2% with whole detector readout. Larger than our goal of E_{γ} resolution (=1%).

Effort to reduce the noise is ongoing both from hardware and software.

Summary

LXe detector in MEG II

• The MEG II experiment will search for $\mu \rightarrow e\gamma$ decay with the sensitivity of 6 × 10⁻¹⁴.

 LXe γ-ray detector has been upgraded to significantly improve the resolution by newly developed VUV-MPPCs.

Commissioning of LXe detector

- In 2017, detector commissioning has been started.
- Sufficient performance has been confirmed for most of the MPPCs.
- Gamma-ray near signal energy (50MeV) has been successfully detected.
- Good timing resolution has been achieved by even-odd analysis.

Prospect

Position and energy resolution will be measured in 2018, followed by the engineering and physics run of MEG II from 2019.

BACKUP

"COMMISSIONING OF LIQUID XE DETECTOR WITH VUV-MPPC READOUT FOR MEG II EXPERIMENT", SHINJI OGAWA, ICHEP 2018, SEOUL, KOREA

"LIQUID XENON DETECTOR WITH VUV-SENSITIVE MPPCS FOR MEG II EXPERIMENT", SHINJI OGAWA, TIPP 2017, BEIJING, CHINA

We search for charged lepton flavor violating decay of muon, μ ->e+ γ . Prohibited in SM, detectable branching ratio in some BSM model Main background is the accidental background.

Detector resolutions, especially energy resolution of γ-ray,

are important to effectively distinguish the signal event

from the accidental background

e

 $\widetilde{e_R}$

 $\tilde{\chi^0}$

 μ

Expected performance

log scale

Significant improvement is expected for resolutions and efficiency.

	MEG (measured)	MEG II (simulated)	
σ (position)	~5 mm	~2.5 mm	improve by
σ (energy)	~2%	0.7 - 1.5%	a factor of 2!
σ (timing)	67 ps	50 - 70 ps	
Efficiency	65%	70%	

Performance test of our MPPC

We have tested MPPC in LXe, and an excellent performance has been confirmed.

- Sufficiently short timing constant has been achieved by series connection.
- Single p.e. peak is clearly resolved for large sensitive area.
- Gain: 8.0 \times 10⁵ (@ Vover=7V, series connection)
- Low crosstalk & after pulse probability (~15% each@ Vover = 7V)

Energy resolution

Energy resolution for VUV light has been measured as a function of # of p.e
 using a scintillation light from α source.

□ by changing geometrical acceptance with several setups.

Energy resolution improves as $1/\sqrt{(\# \text{ of p.e.})}$

 \Box at least down to ~10⁴ p.e.

excess noise factor: 1.2 - 1.3 (reason has not yet been understood.)

Energy Resolution vs Photon Statistics

Signal transmission system

We have developed signal transmission system.

- It can transmit ~5000 ch signals.
- Long cable (~12m) before signal amplification.
- PCB has coaxial-like structure for impedance matching (50Ω), good shielding from external noise, high bandwidth, and low crosstalk.
- Feedthrough is based on PCB to realize high density transmission.
- This system has been tested in LXe for 600 ch, and confirmed to work properly.

"Coaxial-like structure" PCB

22

MPPC installation to the cryostat

- MPPCs are mounted on PCBs.
 - for signal readout and alignment.
 - PCBs are fixed on CFRP support structure which is attached on cryostat.
- These support are designed to minimize the material.
 - Thin support structure with low mass material
 - Spacers to reduce LXe.

23

Detector assembly

- Detector assembly has been completed.
 - Photo-sensor installation
 - Cabling
 - Connection check for all sensors.
 - Sensor position measurement by 3D Laser scanner (FARO)
 - Calibration source (LED, α source) installation.

\rightarrow Detector construction: Finished (Apr.2017).

Position measurement by 3D laser scanner

Calibration & monitoring tools

LEDs and α wires are installed as we did in MEG. Some LEDs are added for calibration of SiPMs. (Calibration tools with accelerator are not shown here.)

Alpha DAQ

Alpha event trigger by lateral PMT. Event selection

- Separate alpha and others by pulse shape discrimination
- Select events from each alpha source by position reconstruction.

Detector stability is successfully monitored. MPPC gain, PMT gain, LXe light yield etc...

MPPC Gain

Monitored by two methods.

Detector stability

- By MPPC 1 p.e. charge. (Absolute meas. of gain.)
- By LED charge at fixed light intensity. (Relative meas. of gain change.)
- Gradual change of gain due to LXe temperature, was successfully monitored by both methods.

Gain History (Average of all MPPCs)

PMT Gain

PMT Gain

PMT gain was measured by two independent methods.

- 1. By LED intensity scan. (Absolute meas. of gain.)
 - Based on Poisson statistics of arrived # of p.e. from LED light.
- 2. By charge of LED at fixed light intensity. (Relative meas. of gain change.)

Those two methods shows consistent behavior with ~2 % precision. Gradual decrease of gain is aging of PMT under beam (known from MEG I).

Gamma timing resolution in MEG II ²⁹

Background

- In the previous MC study, MEG II timing resolution can be 40-70 ps depending on the noise level.
- Reference : "Improvement of the event reconstruction method for the MEG II liquid xenon detector" at "JPS. 2016年年次大会"

Goal : Check timing resolution in real noise environment. →Perform even-odd analysis.

Difference is "TOF uncertainty of hit position" etc...

How to reconstruct gamma timing

Gamma timing is reconstructed from timing from MPPC & PMT waveforms.

- Timing extraction by waveform analysis
 - + χ^2 min fit of time information from all ch.

