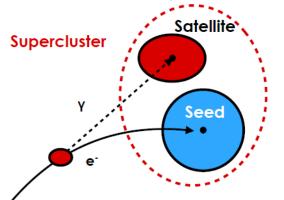
Electron and photon identification with the ATLAS detector

Proklova N.

ICHEP, 5.07.2018

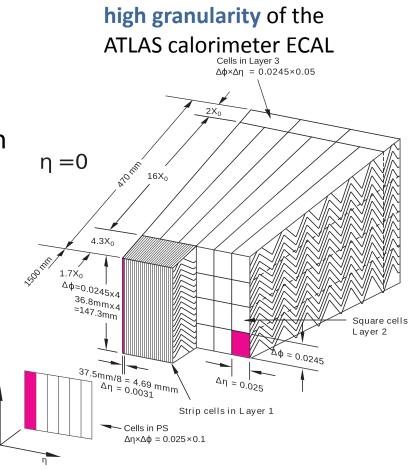
Reconstruction & Identification at ATLAS

Electrons & Photons: Crucial for most of


- the analysis (SM, Higgs, BSM?)
- high efficiencies, good background rejection
- precise understanding of performance

Reconstruction:

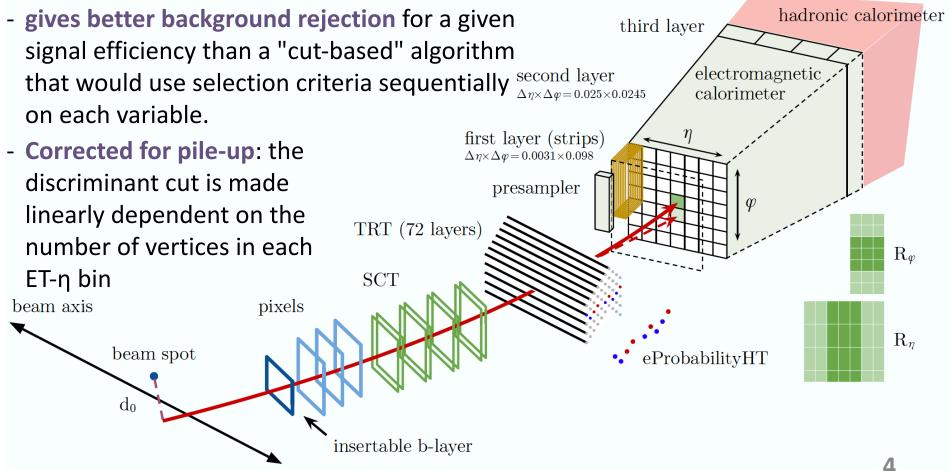
- **Electrons**: Energy cluster and matching track
- **Photons**: Energy cluster without track (unconverted)
 - or matched to track(s) from conversion vertex (converted)


NEW: use of superclusters (w.r.t rectangular

fixed size cluster)

- recover low E photons from bremsstrahlung in the Inner Detector, and connect them to their associated electron or converted photon.

can contain a wide range of deposited E with good E resolution for both low and high energy particles



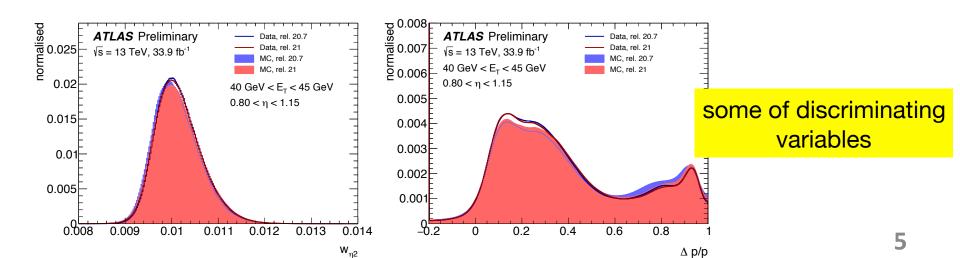
Electrons

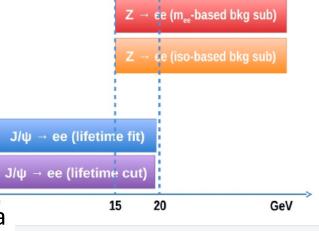
Electron identification

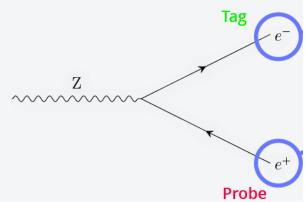
Electron identification:

- **based on a likelihood (LH)** discrimination to separate **isolated electrons** from photon conversions, hadron misidentification and heavy flavor decays.
- multivariate: use of shower shape, track information, and track-cluster matching information

Electron identification


Measured in data with tag&probe method: - J/ Ψ (low ET), Z (high ET) decays to electrons


1. **PDFs** (Probability Density Functions) of discriminating variables for signal and background are formed from data


distributions

$$d_{L} = \frac{L_{S}}{L_{S} + L_{B}}$$
 $L_{s}(x) = \prod_{i=1}^{n} P_{s,i}(x_{i})$

- 2. LH discriminant calculated
- 3. Discriminant cut selected to match desired efficiency

Identification efficiency

240

2200

2000

1800

1600

1400

1200

1000

800 600

400

200

100

120

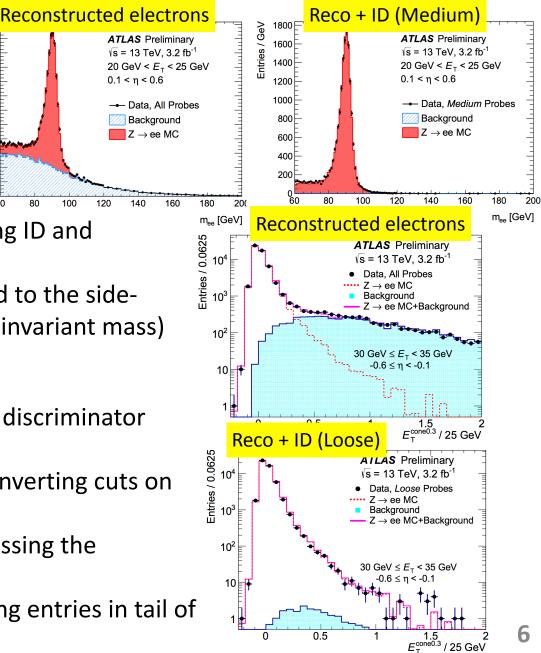
Entries / GeV

Z mass method

Background subtraction is performed using the mass distribution as the discriminating variable.

 Background templates: probes failing ID and isolation criteria

- The background model is normalised to the sidebands (high-invariant mass tail or low invariant mass)

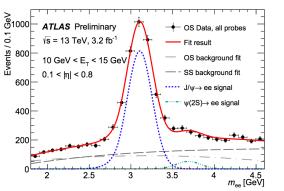

Z iso method

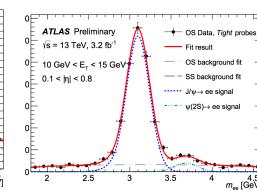
use the probe isolation (calo iso) as a discriminator between signal and background

- Background templates: created by inverting cuts on shower shape and ID variables

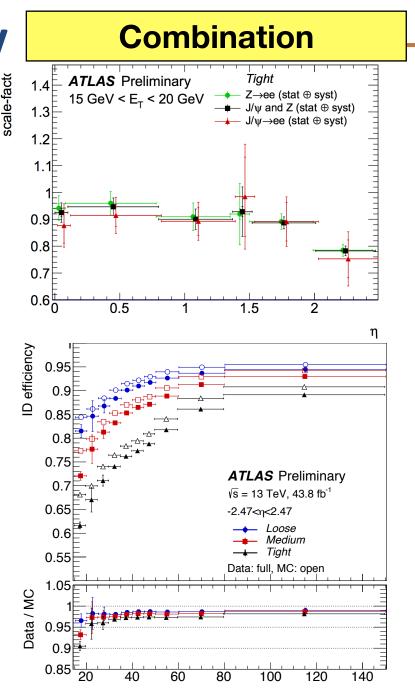
 From MC: Subtract real electrons passing the background selection

- Scale background model to data using entries in tail of probe isolation distribution

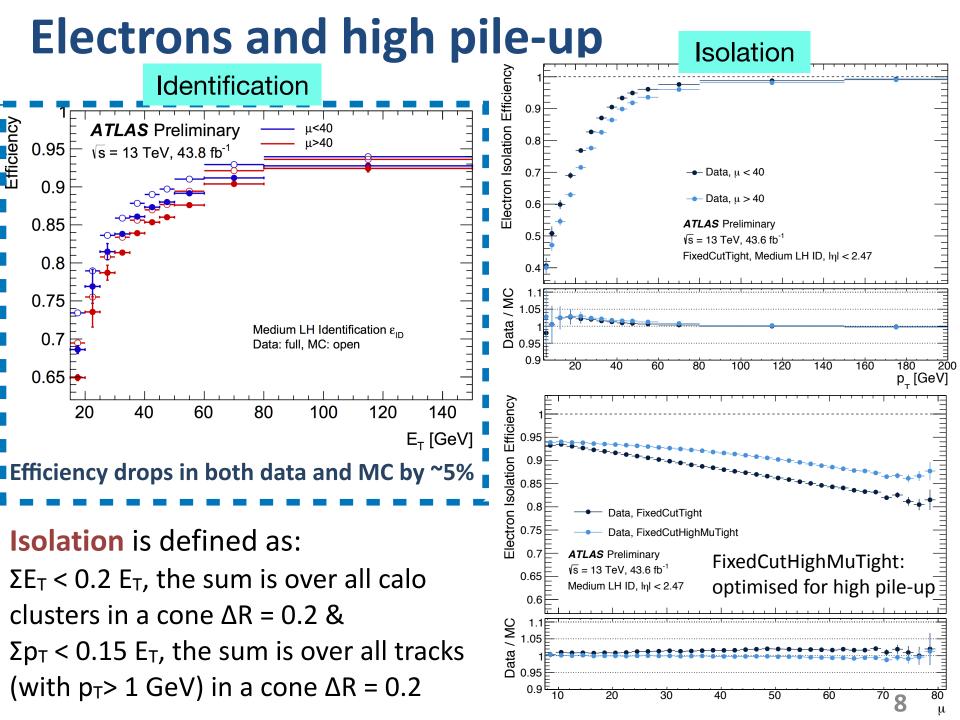

Identification efficiency


J/Ψ method

- 1. 2 main backgrounds:
- jets, photons from conversions, etc
 - Estimated from fit of $m_{e^+e^-}$ distribution


– random combinations of e not from J/ Ψ

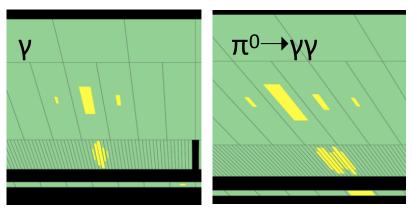
Estimated from same sign sample m_{e+e+} or m_{e-e-}
Separation between prompt and non-prompt with use of pseudo-proper time τ
Unbinned fit of m_{e+e-} distribution is performed in the region 1.8 GeV - 4.6 GeV:
two Crystal-Ball+Gaussian for J/Ψ and Ψ(2S) signals + Chebychev polynomial of the 2nd order for opposite sign background

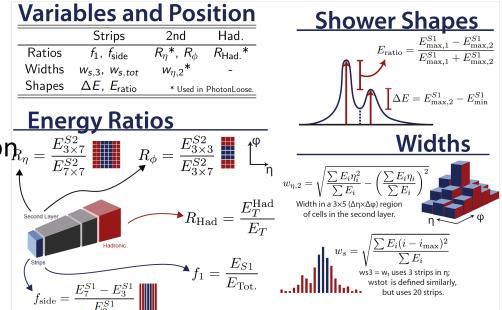


 $L_{xy} \, m^{J/\psi}$

E_T [CeV]

Photons


Photon reconstruction and identification


Prompt photons:

- Direct photon from the hard scattering process
- Fragmentation photon from a parton $R_{\eta} =$ (less isolated)

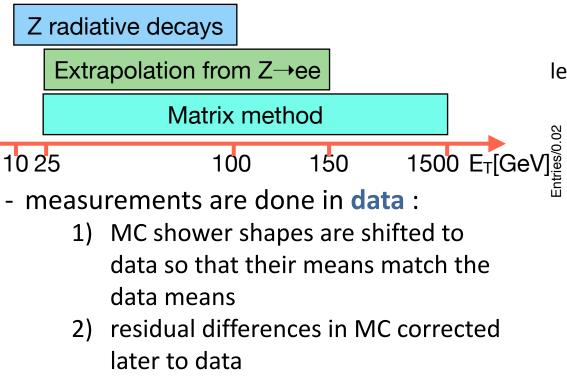
Background:

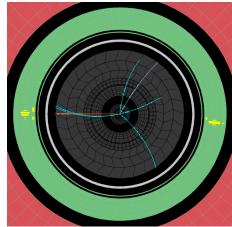
- jets with large EM fraction (e.g. π0, η) that can fake photons
- Electron with similar interaction in calorimeter

ID: 9 discriminating variables (DVs) based on energy in cells of ECAL and leakage in hadronic calorimeter HCAL

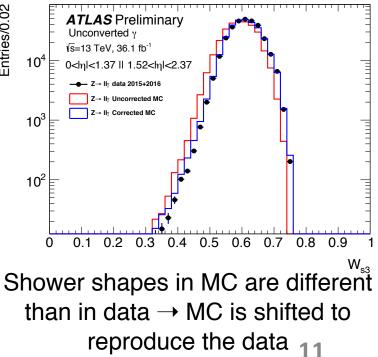
loose ID

- exploits the DVs in the HCAL and in the ECAL middle layer
- used by triggers or as background control region


tight ID

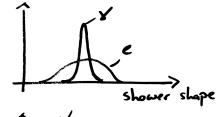

- tighter cuts on DVs used by loose ID, use also ECAL strip layer
- used for offline analysis

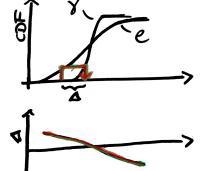
Photon reconstruction and identification


Tight ID: cut-based menu, with dependence on conversion status and η

- Measured with isolated photons
- 3 methods with different ET ranges

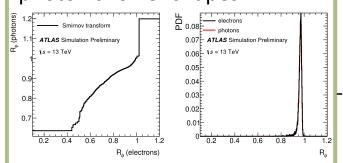
left photon: converted (two tracks) right photon: unconverted

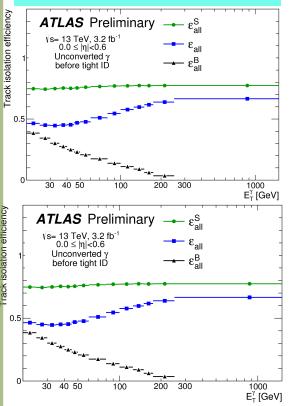



Tight photon identification

Z radiative decays Bkg: ISR γ, jets 120 m_{II} [GeV] ATLAS Preliminary 110F √s=13 TeV. 36.1 fb⁻¹ 400 no γ-ID selection 100F Z→lγ (l=μ, e) 90 300 80 200 70 60 100 50 40^L 60 70 80 90 100 110 120 Signal: FSR y m_⊪ [GeV]

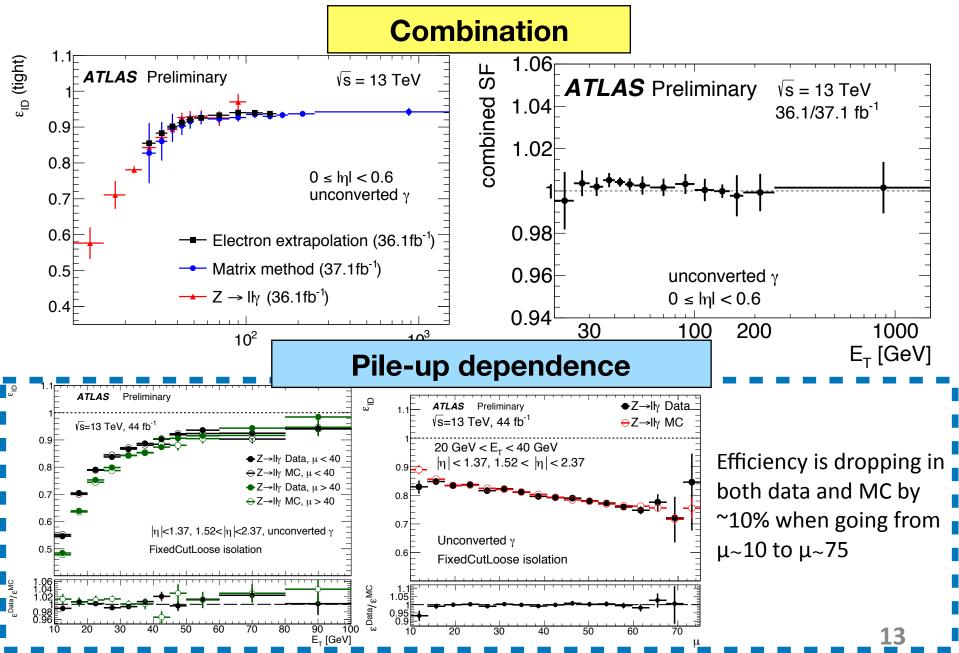
- low ET range, but pure photon sample (P=95-99%)
- For FSR selection cuts used on Mll and Mllγ
- Background contamination (Z+jets) is estimated from mllγ template fit and subtracted from data


Extrapolation from Z->ee

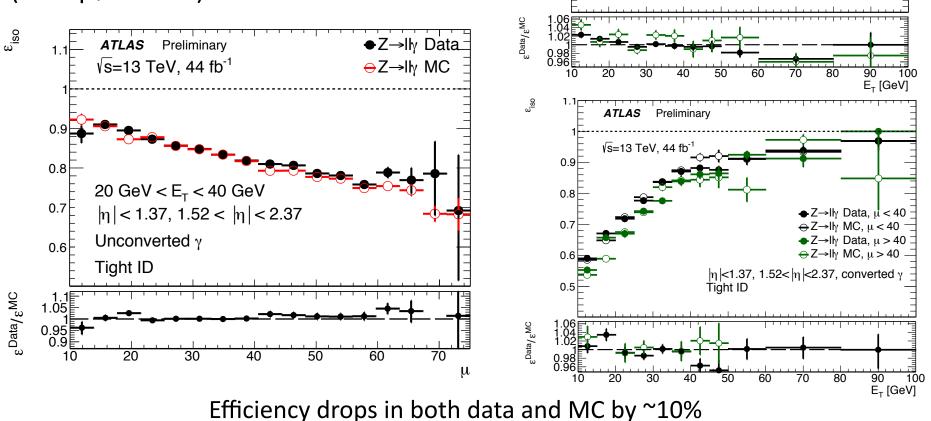


Use of Smirnov Transformation

(based on CDFs) to transform electron shower shapes to photon shower shapes



Matrix method


Select photon sample using loose photon triggers, extracting signal purities before and after tight ID Purities computed by the use of track isolation efficiencies **12**

Tight photon identification

Photon isolation and pile-up

Isolation is defined as: $\Sigma E_T/E_T < 0.065$, the sum is over all calo clusters in a cone $\Delta R < 0.2$ & $\Sigma p_T/E_T < 0.05$, the sum is over all tracks (with $p_T > 1$ GeV) in a cone $\Delta R = 0.2$

ATLAS Preliminary

Tight ID

√s=13 Te

0.9

0.8

0.7

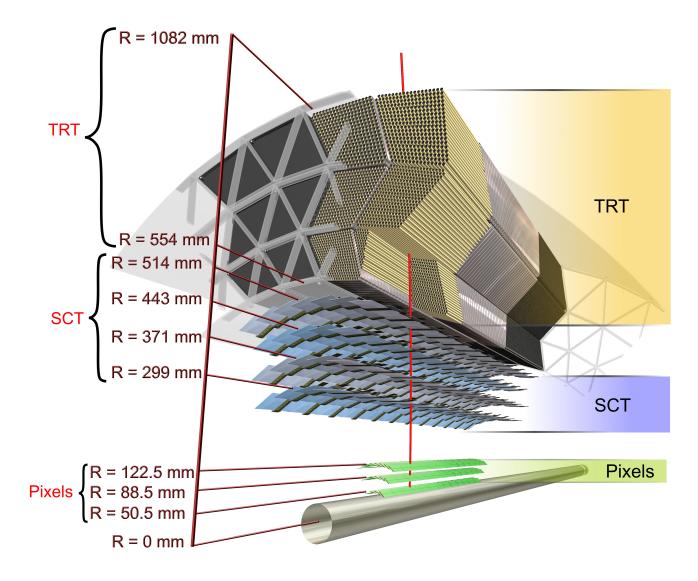
0.6

0.5

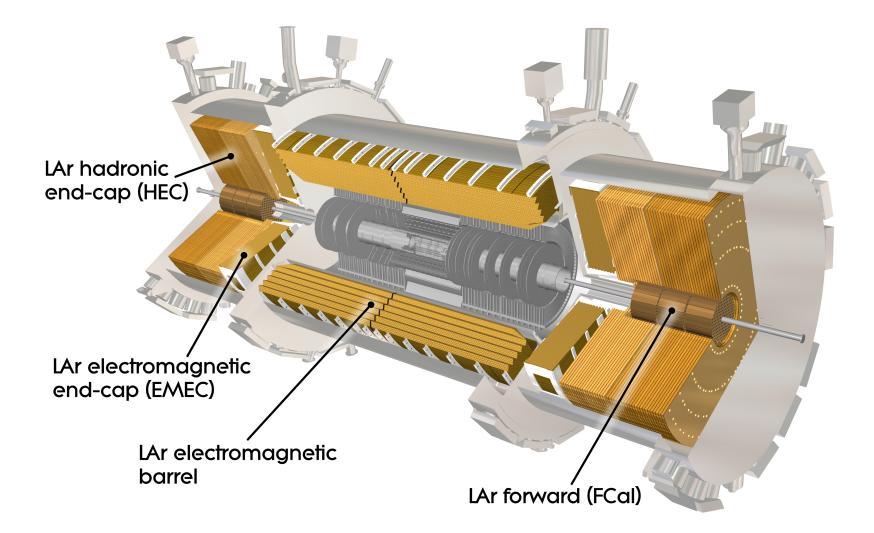
• Z \rightarrow Ihy Data, μ > 40

 \leftrightarrow Z \rightarrow Ih MC, μ < 40

 \leftrightarrow Z \rightarrow Ih MC, μ > 40

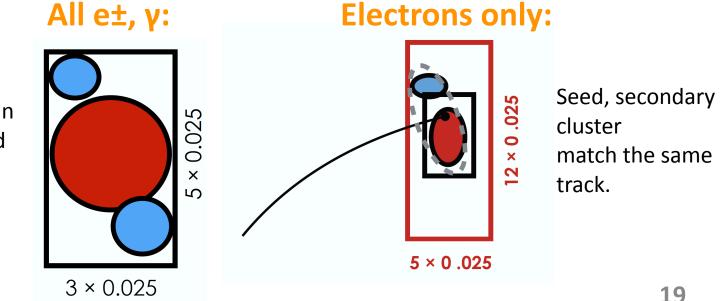

 $|\eta| < 1.37, 1.52 < |\eta| < 2.37, unconverted \gamma$

Summary


- Excellent electron and photon performance measurements during Run-II
- Improved strategies for electron and photon identification are introduced to cope with the increase of instantaneous luminosity and high pile-up

Backup Slides

Inner tracker


Calorimeter

Supercluster building

The supercluster algorithm:

- the seed cluster
- the satellite cluster.
- around the extrapolated track a $\Delta \eta \times \Delta \phi = 3 \times 7$ cluster in the barrel and 5 \times 5 in the end-caps
- 8% (5%) better resolution in J/ $\Psi \rightarrow ee(Z \rightarrow ee)$ mass with better bkg rejection
- Electron candidates start with track-matched seed clusters ET > 1 GeV
- Photon candidates start with seed clusters with ET > 1.5 GeV
- Currently only using best track/conversion vertex for all the matching

Add all clusters within 3 × 5 window around seed cluster.

Photon discriminating variables

Category	Description	Name	loose	tight
Acceptance	$ \eta < 2.37$, with $1.37 < \eta < 1.52$ excluded	_	~	~
Hadronic leakage	Ratio of $E_{\rm T}$ in the first sampling layer of the hadronic calorimeter to $E_{\rm T}$ of the EM cluster (used over the range $ \eta < 0.8$ or $ \eta > 1.37$)	R_{had_1}	~	~
	Ratio of $E_{\rm T}$ in the hadronic calorimeter to $E_{\rm T}$ of the EM cluster (used over the range $0.8 < \eta < 1.37$)	R _{had}	~	√
EM Middle layer	Ratio of $3 \times 7 \eta \times \phi$ to 7×7 cell energies	R_{η}	✓	\checkmark
	Lateral width of the shower	w_{η_2}	~	\checkmark
	Ratio of $3 \times 3 \eta \times \phi$ to 3×7 cell energies	R_{ϕ}		\checkmark
EM Strip layer	Shower width calculated from three strips around the strip with maximum energy deposit	<i>w</i> _{s3}		\checkmark
	Total lateral shower width	$w_{s tot}$		\checkmark
	Energy outside the core of the three central strips but within seven strips divided by energy within the three central strips	$F_{\rm side}$		√
	Difference between the energy associated with the second maximum in the strip layer and the energy re- constructed in the strip with the minimum value found between the first and second maxima	ΔΕ		√
	Ratio of the energy difference associated with the largest and second largest energy deposits to the sum of these energies	$E_{ m ratio}$		~

Table 1: Discriminating variables used for loose and tight photon identification.

Electron discriminating variables

Туре	Description	Name	
Hadronic leakage	Ratio of $E_{\rm T}$ in the first layer of the hadronic calorimeter to $E_{\rm T}$ of the EM cluster	R _{had1}	
	(used over the range $ \eta < 0.8$ or $ \eta > 1.37$)		
	Ratio of $E_{\rm T}$ in the hadronic calorimeter to $E_{\rm T}$ of the EM cluster	R _{had}	
	(used over the range $0.8 < \eta < 1.37$)		
Back layer of	Ratio of the energy in the back layer to the total energy in the EM accordion	f_3	
EM calorimeter	calorimeter. This variable is only used below 100 GeV because it is known to		
	be inefficient at high energies.		
Middle layer of	Lateral shower width, $\sqrt{(\Sigma E_i \eta_i^2)/(\Sigma E_i) - ((\Sigma E_i \eta_i)/(\Sigma E_i))^2}$, where E_i is the	$w_{\eta 2}$	
EM calorimeter	energy and η_i is the pseudorapidity of cell <i>i</i> and the sum is calculated within		
	a window of 3×5 cells		
	Ratio of the energy in 3×3 cells over the energy in 3×7 cells centered at the	R_{ϕ}	
	electron cluster position	,	
	Ratio of the energy in 3×7 cells over the energy in 7×7 cells centered at the	R_{η}	
	electron cluster position		
Strip layer of	Shower width, $\sqrt{(\Sigma E_i(i-i_{\max})^2)/(\Sigma E_i)}$, where <i>i</i> runs over all strips in a window	$w_{\rm stot}$	
EM calorimeter	of $\Delta \eta \times \Delta \phi \approx 0.0625 \times 0.2$, corresponding typically to 20 strips in η , and		
	i_{max} is the index of the highest-energy strip		
	Ratio of the energy difference between the largest and second largest energy	$E_{\rm ratio}$	
	deposits in the cluster over the sum of these energies		
	Ratio of the energy in the strip layer to the total energy in the EM accordion	f_1	
	calorimeter		
Track conditions	Number of hits in the innermost pixel layer; discriminates against	$n_{\rm Blayer}$	
	photon conversions		
	Number of hits in the pixel detector	$n_{\rm Pixel}$	
	Number of total hits in the pixel and SCT detectors	n _{Si}	
	Transverse impact parameter with respect to the beam-line	d_0	
	Significance of transverse impact parameter defined as the ratio of d_0	d_0/σ_{d_0}	
	and its uncertainty		
	Momentum lost by the track between the perigee and the last	$\Delta p/p$	
	measurement point divided by the original momentum		
TRT	Likelihood probability based on transition radiation in the TRT	eProbabilityH'	
Track-cluster	$\Delta \eta$ between the cluster position in the strip layer and the extrapolated track	$\Delta \eta_1$	
matching	$\Delta \phi$ between the cluster position in the middle layer and the track extrapolated	$\Delta \phi_2$	
	from the perigee		
	Defined as $\Delta \phi_2$, but the track momentum is rescaled to the cluster energy	$\Delta \phi_{\rm res}$	
	before extrapolating the track from the perigee to the middle layer of the calorimeter		
	Ratio of the cluster energy to the track momentum	E/p	

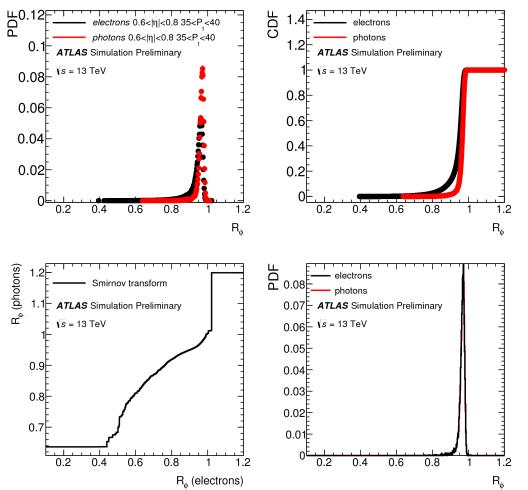
Photon ID: Radiative Z method

Purity estimation with a template fit

- Number of background events could be estimated in data from the template fit Signal (Zll γ) PDF + background (Z+jets) PDF = fit to data

Purity:
$$P = \frac{N_{sig}}{N_{sig} + N_{bkg}}$$

- Efficiency is corrected by doing
background subtraction:
 $\varepsilon = \frac{N_{probes, pID} - N_{bkg, pID}}{N_{probes} - N_{bkg}} = \frac{N_{sig, pID}}{N_{sig}}$
Method allows to correct data up
to ~25 GeV (P=~95-99%)


- E_T range in [10; 100] GeV

Photon ID: Electron extrapolation method

- Shower shape distributions of electrons and photons γ are similar due to similar interactions of photons and electrons in the detector
- Select a pure sample of electrons from Z decays using a tag-andprobe method and transform their shower shape distributions such that the resulting object has photon properties:

$$s' = \mathrm{CDF}_{\gamma}^{-1}(\mathrm{CDF}_{\mathrm{e}}(s))$$

- Typical E_T of electrons from Z decays of order m_Z/2 -> measurement in range:
 - E_T in [25; 150] GeV

Photon ID: Matrix method

- Sample of inclusive photons collected with a single-photon trigger
- Large kinematic range: ET in [25; 1500] GeV
- ID efficiency can be computed by employing an additional discriminating variable: track isolation (assumed uncorrelated with shower shape variables) which is applied before and after ID cuts

$$\varepsilon_{\rm ID} = \frac{N_{\rm ID}^S}{N^S}$$
$$\hat{N}_{\rm ID} = \hat{\varepsilon}_{\rm ID}^S \cdot N_{\rm ID}^S + \hat{\varepsilon}_{\rm ID}^B \cdot N_{\rm ID}^B$$
$$\hat{N} = \hat{\varepsilon}^S \cdot N^S + \hat{\varepsilon}^B \cdot N^B$$
$$\underbrace{\sum_{\rm ID} = \frac{\hat{\varepsilon}_{\rm ID} - \hat{\varepsilon}_{\rm ID}^B}{\hat{\varepsilon}_{\rm ID}^S - \hat{\varepsilon}_{\rm ID}^B} \cdot N_{\rm ID}}{\hat{\varepsilon}_{\rm S}^S - \hat{\varepsilon}^B} \cdot N$$

Track-isolation efficiencies are obtained:

- from MC for signal (photons)
- from data for background, making use of low correlation between strip layer variables and track isolation