The STEREO experiment : a search for sterile neutrino ${\sim}1\text{eV}$ at ILL

Laura Bernard LPSC, Grenoble, France

on behalf of the Stereo collaboration

Motivation : $\bar{\nu_e}$ disappearance

Phys.Rev.D83:073006 (2011)

2011: reevaluation of the $\bar{\nu}_e$ reactor flux prediction

 $\rightarrow {\it Reactor \ Antineutrino \ Anomaly: \ All \ reactor \ short-baseline \ experiments \ are \ observing \ a \ deficit \ (very \ accurate \ measurements: \ Daya \ Bay, \ RENO \ \& \ Double \ Chooz)}$

- Wrong prediction ?
- Sterile neutrino ?

More exactly, we need ...

- Non-ambiguous measurements to sign the existence -or not- of a light sterile neutrino
- Accurate energy measurements to constrain antineutrinos spectra

Experimental site ILL research facility, Grenoble, France

Research reactor core $\sim 58\,{\rm MW}_{th}$ $\rightarrow 10^{19}~\bar{\nu}_e~s^{-1}$

- ✓ Compact core (40cm Ø)
- ✓ Highly enriched ²³⁵U
- ✓ Short baseline measurement: $8.9m < L_{core} < 11.1m$

Water channel 15 mwe overburden

 \times Surface-level experiment (BUT 15 m.w.e only thanks to water channel)

 $\times~\gamma$ and neutron background from neighboring experiments

The STEREO experiment

arXiv:1804.09052 (2018)

1- Designed to probe the RAA region by measuring relative distortions of the $\bar{\nu}_e$ energy spectrum as a function of the distance [9-11m]

 ✓ Independent from predicted energy spectrum (norm. + shape)

2- Measurement of a pure ²³⁵U $\bar{\nu_e}$ energy spectrum

 Stereo is running since Nov. 2016

Phase-I:

- Loss of optical coupling between PMTs and target for one target and on GC cell
- Evolving light cross-talks between cells
 - ightarrow repaired during summer 2017

Phase-II:

• Stable conditions

Physics runs: $\sim 95\%$ of data taking time

Detector response

arXiv:1804.09052 (2018)

- Monitoring of liquids/electronics: Automatic daily LED measurement: PMT gain, liquid stability, electronics linearity
- Monitoring of the energy response: On a weekly basis: internal and external calibrations using radioactive sources Ge⁶⁸, Sb¹²⁴, Cs¹³⁷, Mn⁵⁴, Zn⁶⁵, Na²⁴, H¹(n, γ)
- Monitoring of the neutron capture: Using dedicated AmBe source

 \rightarrow Tuning of the MC simulation of the detector: Light collection, liquid properties, non linearity (k_b)

Energy reconstruction

arXiv:1804.09052 (2018)

- Tool developped to take into account:
 - Light collection loss
 - Evolving light leaks along time

from calib runs

Light cross-talk between cells Measured online + calib

• Stability of the reconstructed n-H & n-Gd peaks (whole target volume) and deviation to MC

Shielding against background

Passive and active shieldings against gamma, neutron and muon induced background

Lead

Support structure

$\bar{\nu}_e$ signal selection

Inverse Beta Decay reaction

Correlated background

Neutron induced reactions:

- Fast neutrons Prompt: proton recoil
- Multiple neutron captures Prompt: 2.2 MeV γ or a 8 MeV γ cascade from n-capt
- ${}^{12}C(n,n'\gamma){}^{12}C$ reactions Prompt: mixing between 4.4 MeV γ and proton recoil

Pulse Shape Discrimination for prompt signal

Stopping muons:

Prompt: μ stop Delayed: Michel e^{+/-} \checkmark Mainly rejected by asymmetry based cut

Laura Bernard, ICHEP, July 5, 2018

Prompt energy spectrum in the region of interest

$\bar{\nu}_e$ signal extraction: from PSD distributions

Coherent method to estimate background under $\bar{\nu}_e$ component:

- No assumption on PSD stability (temperature sensitivity)
- No assumption on global norm (pressure sensitivity)

$\bar{\nu}_e$ signal extraction: what's new with phase-2 ?

OFF period of phase-II:

• 84 days ($t_{e\!f\!f}$) with more stable conditions ightarrow increased statistics (larger time binning)

Updated background model Additionnal gaussian (multiple proton recoils hypothesis (under study))

Relative comparison of ν energy distributions: Ratio method

arXiv:1806.02096 (2018)

Compare measured and simulated ratios of energy distributions - cell 1 taken as reference

- Insensitive to absolute flux normalization
- Insensitive to predicted spectrum shape

$$R_{i,j}^{\text{Data}} = \frac{\text{Data}_{i,j}}{\text{Data}_{i,ref=1}} \quad \text{compared with} \quad R_{i,j}^{\text{MC}} = \frac{\text{MC}_{i,j}}{\text{MC}_{i,ref=1}}$$

$$N_{\text{Ebins}} \left(\overrightarrow{\text{pData}} - \overrightarrow{\text{pMC}}_{i,j} \right)^{t} \sqrt{-1} \left(\overrightarrow{\text{pData}} - \overrightarrow{\text{pMC}}_{i,j} \right) + \sum_{i=1}^{N_{\text{Cells}}} \left(\alpha_{j}^{\text{Norm}} \right)^{2} + \sum_{i=1}^{N_{\text{Cells}}} \left(\alpha_{j}^{\text{Escale}} \right)$$

$$\chi^{2} = \sum_{i=1}^{\infty} \left(R_{i}^{\mathsf{Data}} - R_{i}^{\mathsf{MC}}(\alpha) \right)^{\mathsf{T}} V_{i}^{-1} \left(R_{i}^{\mathsf{Data}} - R_{i}^{\mathsf{MC}}(\alpha) \right) + \sum_{j=1}^{\infty} \left(\frac{\alpha_{j}}{\sigma_{j}^{\mathsf{Norm}}} \right)^{\mathsf{T}} + \sum_{j=0}^{\infty} \left(\frac{\alpha_{j}}{\sigma_{j}^{\mathsf{Escale}}} \right)^{\mathsf{T}}$$

 V_i is the covariance matrix of the 5 ratios (common reference for each cell) for the energy bin i $\{\alpha\}$ are nuisance parameters to take into account estimated systematics

	Cell-to-cell correlated	Uncorrelated	
Energy scale σ_i^{Escale}	0.35 %	1.00 %	from energy scale
Normalization σ_i^{Norm}	-	1.70 %	from neutrino efficiencies

2

Ratio method: Results for Phase-I & II

arXiv:1806.02096 (2018)

Ratio method: cell 1 taken as reference

- Measured ratios
- Non-oscillation prediction

- Minimized pull terms stay within $\pm\,1\,\sigma$
- Non-oscillation hypothesis (H₀) can not be rejected: p-value = 34 % (40 %) for phase-I (phase-I+II)

Measured ratios for the cells from 2 to 6 (blue) compared to the null oscillation hypothesis model (red)

Exclusion contours Phase-I+II combined

arXiv:1806.02096 (2018)

• Phase-I + Phase-II combined results (66+47) days reactor-ON (396 \pm 4) $\bar{\nu}_e$ day⁻¹

Considered as two independent measurements: $\chi^2_l = \chi^2_l(\overrightarrow{\alpha_l}) + \chi^2_{ll}(\overrightarrow{\alpha_{ll}})$ $\overrightarrow{\alpha_l} \neq \overrightarrow{\alpha_{ll}}$

- Raster-scan approach (Δ_m^2 slices)
- $\Delta\chi^2$ distributions estimated by MC pseudo experiments
- Best-fit value of the RAA rejected at 98 % C.L.

- STEREO is now running under very stable conditions
- The correlated background understanding improves using reactor-OFF periods
- First exclusion contour obtained, original RAA is rejected at 98%CL using the robust ratio method. Data taking will continue until end 2019, reaching 300 days of reactor-ON data arXiv:1806.02096 (2018)
- Improved results are coming soon, with a pure $^{235}\mathrm{U}$ spectrum

 \sim Thanks for your attention ! \sim

BACKUP

Quenching curve

```
Non-linear light production in the large dE/dx regime (low E – Bragg peak)
```


Am-Be neutron source in target cells :

- n-capt time from AM-Be in agreement with IBD candidates
- Relative variations of n efficiency in agreement between MC and data
- Absolute fraction of Gd-capture fine-tuned in MC : determination of the glocal n-capture efficiency

Systematics

Source	Contrib to σ_{Cell}
Cell volume	0.85 %
n-capture efficiency	1.20 %
Asym cut efficiency	0.50 % (3% cell4)
D _{p-d} cut efficiency	0.50 %
Annihilation cut efficiency	0.50 %
(E _{j≠vertex} <0.8 MeV)	
TOTAL	1.7% (3.4% cell4)

Source	Contrib to o
Escale correlated	0.35 %

Source	Contrib to σ_{cell}
Escale uncorrelated	1.50 %

- $\mathcal{A}_{\gamma}/\mathcal{A}_{p}$ compatible with a constant in all cell/energy bin
- Same correlation with atmospheric pressure for e-recoils rates and p-recoils rates

PSD (electronic) correlation with temperature

PSD follows temperature changes

- Temperature changes occur when reactor goes on, or off, and lasts for several weeks
- Linear correlation with slope [-0.015 / -0.020] (PSD unit/Celsius degree)

