The MicroBooNE Detector

July 5th 2018, ICHEP, Seoul, South Korea

David Caratelli @ Fermilab

On behalf of the MicroBooNE Collaboration

Fermilab

Why build the MicroBooNE Detector?

David Caratelli, Fermilab : ICHEP 2018, Seoul, South Korea

Oscillation physics goals: Precision PMNS mixing matrix: mass ordering, δ_{CP} , sterile neutrino searches.

Achieving this program requires a new level of **precision** for accelerator-based neutrino measurements.

Neutrino energy determination is essential for these measurements.

MicroBooNE investigates sterile neutrinos @ Fermilab. **Detector needs** are the same for other SBN and DUNE programs.

What we want from our detector

We want to use our detector to accurately measure neutrino energies & flavor

detailed information from neutrino interaction is essential due to complex nature of interaction at 1 GeV.

Need a detector capable of performing accurate particle identification with low thresholds.

LArTPC allows to extract full details of v interaction.

neutrino

This gives us:

1) more accurate energy reconstruction.

2) background rejection in v_{a} oscillation measurement.

EM showers from $\pi \rightarrow \gamma \gamma$

MicroBooNE is leading the way in the development of techniques employed for the reconstruciton, calibration, and analysis of large-scale LArTPC neutrino experiments.

charged particles

The MicroBooNE Detector

David Caratelli, Fermilab : ICHEP 2018, Seoul, South Korea

MicroBooNE in a nutshell

David Caratelli, Fermilab : ICHEP 2018, Seoul, South Korea

Liquid Argon Time Projection Chamber. Measures ionization electrons and scintillation light produced by traversing charged particles.

JINST 12, P02017 (2017)

By the numbers:

 $10 \times 2.5 \times 2.3$ meters $\rightarrow 87$ tons of LAr. Surface detector $\rightarrow 5$ kHz cosmic-ray rate. 8k wires \rightarrow mm spatial resolution. $70 \text{ kV} \rightarrow 2.3$ ms drift-time. 32 PMTs for timing / background rejection. Cosmic Ray Tagger installed in 2016/17

MicroBooNE Operations

David Caratelli, Fermilab : ICHEP 2018, Seoul, South Korea

MicroBooNE studies neutrino interactions on the Booster Neutrino Beamline at Fermilab. 1 GeV $v_{u} \rightarrow 1$ neutrino interaction per minute.

Data taking started in Fall 2015.

Three years of stable operations.

9.5 x 10²⁰ POT of v beam \rightarrow 10⁵ interactions.

> 95% DAQ uptime.

Largest LArTPC currently operating worldwide.

Strong team of physicists, engineers and technicians maintaining many subsystems.

Strive to share knowledge with LarTPC community

e.g. cryo, HV, electronics.

How to go from high-resolution images to quantitative measurements

1) Pattern Recognition

Signal formation and signal processing

David Caratelli, Fermilab : ICHEP 2018, Seoul, South Korea

Extensive development of advanced techniques for noise-filtering and signal-processing.

Noise filtering: JINST 12 P08003 (2017)

Ionization and Signal Processing I & II: arXiv:1804.02583, arXiv:1802.08709. (accepted by JINST)

High level pattern recognition

Multi-staged approach to perform high-quality pattern recognition.

High level pattern recognition

David Caratelli, Fermilab : ICHEP 2018, Seoul, South Korea

Broad R&D program developing advanced techniques for pattern-recognition employing numerous methods.

How to go from high-resolution images to quantitative measurements

2) Particle kinematics for physics analyses

Calibrations

Two-step calibration of energy response:

1) Produce uniform response map. - accounts for quenching & electric field distortions.

2) Calibrate absolute energy scale with stopping muons.

Allows for:

- Calorimetric energy reconstruction
- Particle identification

Tracking performance

millimiter position and vertexing resolution translates into:

- accurate momentum determination (few %).
- high resolution for vertex activity.

Good position resolution enables better measurement of kinematics. Studies from MICROBOONE-NOTE-1049-PUB

Tracking : Multiple Coulomb Scattering

Multiple Coulomb Scattering energy estimation achieves **10% resolution** in MicroBooNE.

Refined MCS technique specific for argon.

Employed for \mathbf{P}_{μ} determination in many analyses. Data-driven evaluation of technique.

JINST 12 (2017) P10010.

Updates on data-driven studies in MICROBOONE-NOTE-1049-PUB

15

Calibrating Electromagnetic Interactions

300 MeV e- showers in LAr

Calibrating Electromagnetic Interactions

David Caratelli, Fermilab : ICHEP 2018, Seoul, South Korea

1.62e20 POT

√F

450

500

17

400

 $\pi^0 \rightarrow 30$ - few hundred MeV

Electron and photon reconstruction is key to oscillation measurements.

MicroBooNE has developed the first fully-automated reconstruction tools for EM reconstruction in LArTPCs.

Focus on studying energy reconstruction performance. 20% resolution, with good data-MC agreement.

Michel electrons and photons from π^0 are used for these studies.

Michel electrons < 50 MeV

Conclusions

David Caratelli, Fermilab : ICHEP 2018, Seoul, South Korea

The MicroBooNE experiment has been taking data on the Booster Neutrino Beamline since Fall of 2015.

 \rightarrow Largest sample of low-energy neutrino interactions on Ar.

Leading the development and building expertise necessary to take full advantage of LArTPC technology for O(1) GeV neutrino oscillation measurements.

 \rightarrow Fully transferable to DUNE and SBN.

Presented latest results on detector performance, from calibrations to reconstruction.

These results directly impact the physics we extract from our detector.

→ see "Latest Results from MicroBooNE" by Pip Hamilton for Analysis Status

MicroBooNE public notes accessible @ http://microboone.fnal.gov/public-notes/

Backup

LArTPC Working Principle

LArTPC Working Principle

BNB and NuMI Beamlines

MicroBooNE's neutrinos

David Caratelli, Fermilab : ICHEP 2018, Seoul, South Korea

MicroBooNE studies neutrino interactions on the Booster Neutrino Beamline at Fermilab.

O(1 GeV) v_{μ} beam. 400 meter baseline $\rightarrow L/E \sim 1 \text{ eV}^2$.

Electron Attenuation by Impurities

Drifting electrons are absorbed by impurities in the argon.

H2O and O2 are the main sources of eattenuation.

This causes a drift-distance dependent signal attenuation which must be calibrated out.

MicroBooNE design: obtain a 3 ms lifetime.

Currently well above 10 ms.

Electron Attenuation in MicroBooNE: MICROBOONE-NOTE-1026-PUB

Electron lifetime is so high that driftdependent variation in charge response is sub-dominant to effect caused by distortions in the electric field (see next slide).

Both generally contained to the 5% level.

MicroBooNE LAr quality:

- Air evacuation during commissioning (fill cryostat volume with heavy Ar from bottom → remove impurities in air).
- Recirculation and impurity filtration allow to clean Ar as impurities build up.
- Well beyond our design goal of 3 ms argon lifetime.

Electronics Noise

Interactions in Argon

Electron / Photon Separation

Electric Field Distortions : Space Charge

Positive ions drift 105 times slower then e- in Lar.

Buildup of Ar+ in TPC in steady-state configuration.

The Ar+ ions distort the electric field causing:

1) variations in drift direction \rightarrow spatial distortions

2) variations in E-field strength \rightarrow calorimetry distortions.

Simulated $(E_x - E_0) / E_0$ [%]: Z = 5.18 m

Space-charge simulation matches qualitatively effects seen in data.

Work ongoing to produce a calibration map of field distortions caused by the Space Charge Effect through laser and cosmic-ray muon measurements.

Calorimetric Energy Reconstruction

Physics of energy loss in LAr:

Argon is ionized by traversing charged particles.

Positive ions recombine with $e^- \rightarrow signal loss$.

Impurities capture drifting $e s \rightarrow signal loss$.

All need to be accounted for in order to recover MeV scale given the collected electrons on the sense-wires.

Recombination depends on density of Ar+ and e-.

Affected by:

- dE/dx (more energy deposition per unit distance → larger ion density → more recombination)
- E-field strength: determined timescale at which Ar+ / e- drift away from each other.

For electrons / photons much smaller variation in dE/ dx vs. energy compared to muons/protons/pions.

 \rightarrow significant effect, but ~constant.

Michel Electrons

David Caratelli, Fermilab : ICHEP 2018, Seoul, South Korea

Abundant sample of Michel electrons from decayat-rest cosmic-ray muons.

Valuable sample to study EM interactions near the critical energy.

Complex topology: similar contributions from ionization / radiative losses.

JINST 12 P09014 (2017)

Good data-MC agreement.

Spectral distortion due to lossy impact of calorimetric energy reconstruction.

Recovering radiative photons improves energy reconstruction: $30\% \rightarrow 20\%$

$\pi^0 \rightarrow \gamma \gamma \text{ EM Showers}$

Tens to hundreds of MeV energy range photon showers.

 π^{0} mass valuable calibration "line".

Simulation-based energy corrections account for lossy effect of clustering and thresholding.

Recover correct mass, with good agreement between data/MC.

MICROBOONE-NOTE-1032-PUB

µBooNE 13 cm BNB DATA : RUN 5370 EVENT 7227. MARCH 10, 2016. MicroBooNE Simulation Preliminary Fraction of Showers Per Bin Uncorrected **Clustering Correction Cluster+Hit Correction** 0.05 -900 80 20 40 -80-60 -40 -200 60 100 reco^{-E}dep [%]

David Caratelli, Fermilab : ICHEP 2018, Seoul, South Korea

Calibrating Electromagnetic Interactions

MICROBOONE-NOTE-1040-PUB

Tracking : Multiple Coulomb Scattering

Multiple Coulomb Scattering energy estimation achieves **10% resolution** in MicroBooNE. Employed for P_{μ} determination in many analyses. Data-driven evaluation of technique. JINST 12 (2017) P10010. Updates on data-driven studies in MICROBOONE-NOTE-1049-PUB

