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Why build the MicroBooNE Detector?

Oscillation physics goals: Precision PMNS mixing matrix: mass ordering, δ
CP

, sterile 
neutrino searches.

Achieving this program requires a new level of precision for accelerator-based neutrino 
measurements.

Neutrino energy determination is essential for these measurements.

MicroBooNE investigates sterile neutrinos @ Fermilab. Detector needs are the same for 
other SBN and DUNE programs.

David Caratelli, Fermilab : ICHEP 2018, Seoul, South Korea
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What we want from our detector

We want to use our detector to accurately measure neutrino energies &  flavor

detailed information from neutrino interaction is essential due to complex 
nature of interaction at 1 GeV.

Need a detector capable of performing accurate particle identification with 
low thresholds.

long muon with δ-rays

charged pionpr
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separation

2 cm



4

What we want from our detector

neutrino

charged 
particles

EM showers 
from π → γγ

LArTPC allows to extract full details of ν interaction.

This gives us:

1) more accurate energy reconstruction.

2) background rejection in ν
e
 oscillation measurement.

MicroBooNE is leading the way in the development of techniques employed for the 
reconstruciton, calibration, and analysis of large-scale LArTPC neutrino experiments.
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The MicroBooNE Detector
David Caratelli, Fermilab : ICHEP 2018, Seoul, South Korea
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MicroBooNE in a nutshell

By the numbers:

10 x 2.5 x 2.3 meters → 87 tons of LAr.

Surface detector → 5 kHz cosmic-ray rate.

8k wires → mm spatial resolution.

70 kV → 2.3 ms drift-time.

32 PMTs for timing / background rejection.

Cosmic Ray Tagger installed in 2016/17

David Caratelli, Fermilab : ICHEP 2018, Seoul, South Korea

Liquid Argon Time Projection Chamber. Measures ionization electrons and scintillation light 
produced by traversing charged particles.

JINST 12, P02017 (2017)

drift
distance 
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MicroBooNE Operations

Data taking started in Fall 2015.

Three years of stable operations.

9.5 x 1020 POT of ν beam → 105 interactions.

> 95% DAQ uptime.

David Caratelli, Fermilab : ICHEP 2018, Seoul, South Korea

MicroBooNE studies neutrino interactions on the Booster Neutrino Beamline at Fermilab.
1 GeV ν

μ
→ 1 neutrino interaction per minute.

~100k ν interactions

Largest LArTPC currently operating 
worldwide.

Strong team of physicists, engineers and 
technicians maintaining many subsystems.

Strive to share knowledge with LarTPC 
community

e.g. cryo, HV, electronics.
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How to go from high-resolution images to 
quantitative measurements

1) Pattern Recognition
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Signal formation and signal processing

Extensive development of advanced techniques for noise-filtering and signal-processing.

Noise filtering:  JINST 12 P08003 (2017)

Ionization and Signal Processing I & II: arXiv:1804.02583, arXiv:1802.08709. (accepted by JINST)

Total absorption calorimeter with 
anisotropic response.

Different wire-planes and wire 
orientation causes significant variation 
in detector response.

wire-direction → clear signal

drift-
direction → faint signal

David Caratelli, Fermilab : ICHEP 2018, Seoul, South Korea
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High level pattern recognition

Multi-staged approach to perform high-quality pattern recognition.

Pandora multi-algorithm pattern-recognition

Eur. Phys. J. C78, 1, 82 (2018)

2) low-level pattern recognition

3) full interaction reconstruction

1) event-slicing to isolate individual 
interactions
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High level pattern recognition

Broad R&D program developing advanced techniques for pattern-recognition 
employing numerous methods.

New developments and ideas!

Three-dimensional Imaging for Large LArTPCs  
arXiv:1803.04850

David Caratelli, Fermilab : ICHEP 2018, Seoul, South Korea

shower-like
track-like

Development of pixel-based particle 
ID via convolutional neural networks

MICROBOONE-NOTE-1040-PUB JINST 12, P03011 (2017)
+ SSNet article in preparation
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How to go from high-resolution images to 
quantitative measurements

2) Particle kinematics for physics analyses
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Calibrations

Two-step calibration of energy response:

1) Produce uniform response map.
- accounts for quenching & electric field distortions.

2) Calibrate absolute energy scale with 
stopping muons.

Allows for:
● Calorimetric energy reconstruction
● Particle identification

stopping muon

selected protons from neutrino interaction.
MICROBOONE-NOTE-1046-PUB

Absolute energy-scale calibration.
MICROBOONE-NOTE-1048-PUB



14

Tracking performance

millimiter position and vertexing resolution translates into:

● accurate momentum determination (few %).
● high resolution for vertex activity.

Good position resolution enables better measurement of kinematics.

Studies from MICROBOONE-NOTE-1049-PUB

sub-mm tracking 
resolution

4-tra
ck neutrin

o candidate
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Tracking : Multiple Coulomb Scattering

scattering muon track

Multiple Coulomb Scattering energy estimation 
achieves 10% resolution in MicroBooNE.

Refined MCS technique specific for argon.

Employed for P
μ
 determination in many analyses. 

Data-driven evaluation of technique.

JINST 12 (2017) P10010.  

Updates on data-driven studies in MICROBOONE-
NOTE-1049-PUB

θ
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Calibrating Electromagnetic Interactions

radiative γ

300 MeV e- showers in LAr

mm mm mm

mm

track-like energy 
deposition

isolated energy 
deposition
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Calibrating Electromagnetic Interactions

Electron and photon reconstruction is key to oscillation measurements.

MicroBooNE has developed the first fully-automated reconstruction tools for EM 
reconstruction in LArTPCs.

Focus on studying energy reconstruction performance. 20% resolution, with good data-MC 
agreement.

Michel electrons and photons from π0 are used for these studies.

David Caratelli, Fermilab : ICHEP 2018, Seoul, South Korea

Michel electrons < 50 MeV π0→ 30- few hundred MeV

 JINST 12 P09014 (2017) MICROBOONE-NOTE-1032-PUB
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Conclusions

The MicroBooNE experiment has been taking data on the Booster Neutrino Beamline 
since Fall of 2015.

→ Largest sample of low-energy neutrino interactions on Ar.

Leading the development and building expertise necessary to take full advantage of 
LArTPC technology for O(1) GeV neutrino oscillation measurements.

→ Fully transferable to DUNE and SBN.

Presented latest results on detector performance, from calibrations to reconstruction.

These results directly impact the physics we extract from our detector.
→ see “Latest Results from MicroBooNE” by Pip Hamilton for Analysis Status

MicroBooNE public notes accessible @ http://microboone.fnal.gov/public-notes/

David Caratelli, Fermilab : ICHEP 2018, Seoul, South Korea

http://microboone.fnal.gov/public-notes/
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Backup



LArTPC Working Principle
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LArTPC Working Principle

ν

8” PMTs

isotropic UV 
scintillation light. 



LArTPC Working Principle

Electronics in cold:
High signal-to-noise enables 

accurate calorimetry.



BNB and NuMI Beamlines
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MicroBooNE’s neutrinos

MicroBooNE studies neutrino interactions on the Booster Neutrino Beamline at Fermilab.

O(1 GeV) ν
μ
 beam. 400 meter baseline → L/E ~ 1 eV2.

1.6 μs pulsed beam 
suppresses cosmic 

background 700 MeV ν
μ
 beam 

with < 1% ν
e
 

contamination

David Caratelli, Fermilab : ICHEP 2018, Seoul, South Korea
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Electron Attenuation by Impurities

Drifting electrons are absorbed by impurities 
in the argon.

H2O and O2 are the main sources of e- 
attenuation.

This causes a drift-distance dependent signal 
attenuation which must be calibrated out.

MicroBooNE design: obtain a 3 ms lifetime.

Currently well above 10 ms.

Electron lifetime is so high that drift-
dependent variation in charge response is 
sub-dominant to effect caused by distortions 
in the electric field (see next slide).

Both generally contained to the 5% level.

Electron Attenuation in MicroBooNE:
MICROBOONE-NOTE-1026-PUB



MicroBooNE LAr quality:

 Air evacuation during commissioning (fill 
cryostat volume with heavy Ar from bottom 
→ remove impurities in air).

 Recirculation and impurity filtration allow to 
clean Ar as impurities build up.

 Well beyond our design goal of 3 ms argon 
lifetime.

Argon Purity

Contaminants in MicroBooNE
MICROBOONE-NOTE-1003-PUB



Electronics Noise

Noise levels in MicroBooNE:
MICROBOONE-NOTE-1001-TECH

660 ENC goal from TDR



Interactions in Argon



Electron / Photon Separation

photon 
candidate

electron 
candidate
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Electric Field Distortions : Space Charge

Positive ions drift 105 times slower then e- in 
Lar.

Buildup of Ar+ in TPC in steady-state 
configuration.

The Ar+ ions distort the electric field causing:

1) variations in drift direction → spatial 
distortions

2) variations in E-field strength → calorimetry 
distortions.
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Space-charge simulation matches 
qualitatively effects seen in data.

Work ongoing to produce a calibration map of 
field distortions caused by the Space Charge 
Effect through laser and cosmic-ray muon 
measurements.

Space Charge in MicroBooNE:
MICROBOONE-NOTE-1018-PUB



Calorimetric Energy Reconstruction
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Argon is ionized
Wion = 23.6 eV

Ion Recombination
Impurities absorb 
drifting electrons

40% attenuation Negligible @ uBooNE

Physics of energy loss in LAr:

Argon is ionized by traversing charged particles.

Positive ions recombine with e- → signal loss.

Impurities capture drifting e-s → signal loss.

All need to be accounted for in order to recover MeV scale given the collected electrons on the 
sense-wires.



Ion Recombination

Birks model

Box model

Recombination depends on density of Ar+ and e-.

Afected by:

– dE/dx (more energy deposition per unit 
distance → larger ion density → more 
recombination) 

– E-feld strength: determined timescale at 
which Ar+ / e- drift away from each other.

For electrons / photons much smaller variation in dE/
dx vs. energy compared to muons/protons/pions.

→ signifcant efect, but ~constant.
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Michel Electrons

Abundant sample of Michel electrons from decay-
at-rest cosmic-ray muons.

Valuable sample to study EM interactions near the 
critical energy.

Complex topology: similar contributions from 
ionization / radiative losses.

Complex topology 
@ critical energy

David Caratelli, Fermilab : ICHEP 2018, Seoul, South Korea

Good data-MC agreement.

Spectral distortion due to 
lossy impact of calorimetric 
energy reconstruction.

Recovering radiative 
photons improves energy 
reconstruction:

30% → 20%

 JINST 12 P09014 (2017)
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π0 → γγ EM Showers

Tens to hundreds of MeV energy range 
photon showers.

π0 mass valuable calibration “line”.

Simulation-based energy corrections 
account for lossy effect of clustering and 
thresholding.

Recover correct mass, with good agreement 
between data/MC.

David Caratelli, Fermilab : ICHEP 2018, Seoul, South Korea

MICROBOONE-NOTE-1032-PUB
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Calibrating Electromagnetic Interactions


Me



3D Coverage

MICROBOONE-NOTE-1040-PUB
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Tracking : Multiple Coulomb Scattering

scattering muon track

Multiple Coulomb Scattering energy estimation achieves 10% resolution in MicroBooNE.

Employed for P
μ
 determination in many analyses. Data-driven evaluation of technique.

JINST 12 (2017) P10010.  Updates on data-driven studies in MICROBOONE-NOTE-1049-PUB
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