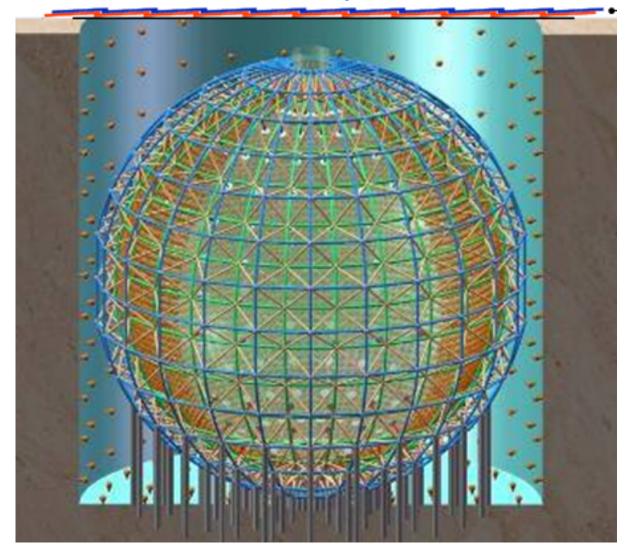


中國科學院為能物招加完施 Institute of High Energy Physics Chinese Academy of Sciences

The R&D and Mass Production of the 20 inch MCP-PMT in China

Sen QIAN (钱森), On Behalf of the MCP-PMT Workgroup

Institute of High energy Physics, Chinese Academy of Science


qians@ihep.ac.cn 7th. July. 2018

O. The Neutrino Experiment in China

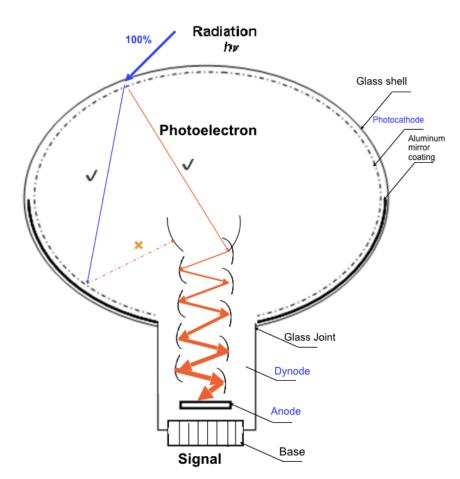
> JUNO Experiment

Generation 1: DayaBay: ~3,000 8-inch Dynode-PMTs from Hamamatsu Generation 2: JUNO: ~20,000 20-inch PMTs from Where?

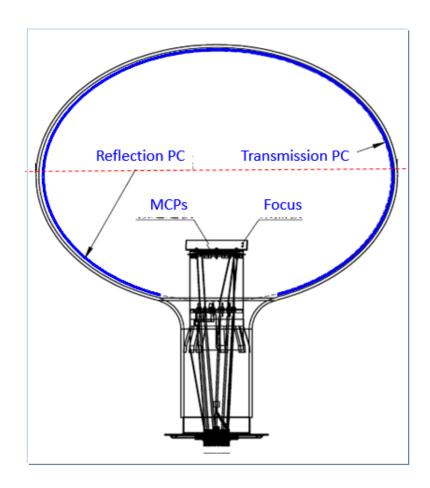
Daya Bay Experiment

Outline

> 1. The R&D of the MCP-PMT for JUNO; (2009-2015)

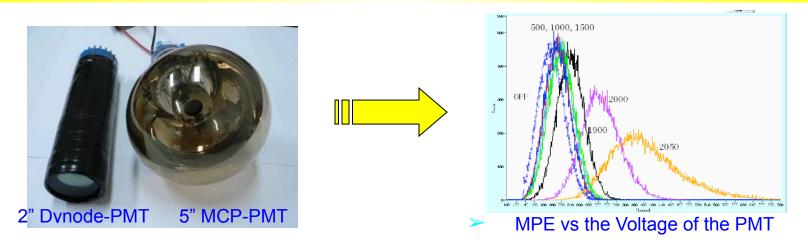

the 8 inch, the 20 inch, the high PDE prototypes;

2. The Mass production and Batch test; (2016-2019)

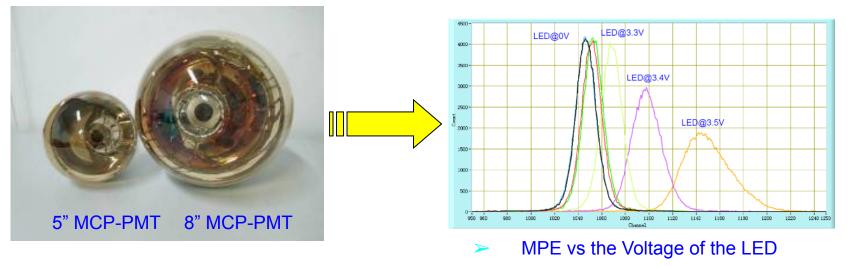

> 3. The improvement of the MCP-PMTs; (2016-2018)

the High QE prototypes, the fast prototypes;

Photon Detection Efficiency : PDE = QE_{Trans+Ref} * **CE**

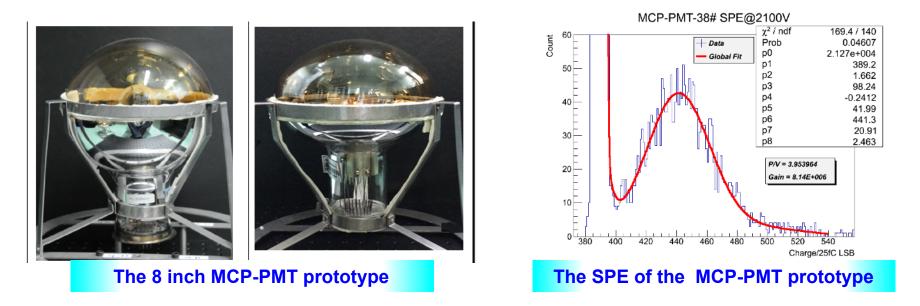


Dynode:(PDE)= QE_{Trans} * CE = 20% * 70% = 14% (2009) = 30% * 90% = 27% (2015)



MCP :(PDE)= QE_{Trans} * CE = 27% * 100% = 27% (2016)

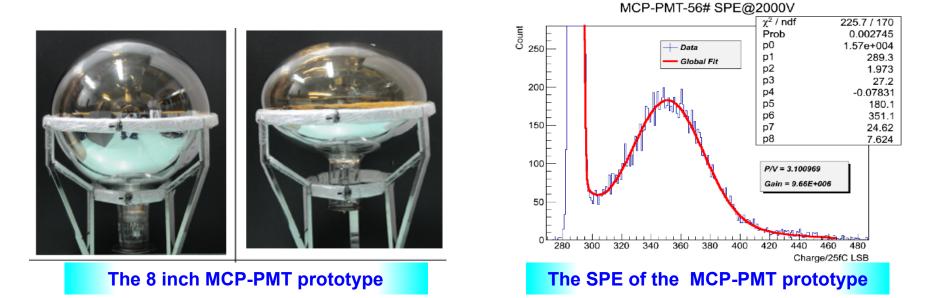
> 1.1 The prototypes without SPE at the beginning


The First 5 inch MCP-PMT was produced in 2011, which was the first large MCP-PMT for the single photon detection, but this prototype can not "see" the SPE.

The 8 inch MCP-PMT was produced in 2012, which could get the best signal of the MCP modules, but still without the SPE anyway.

1.2 The 8 inch prototypes with normal performance--2013

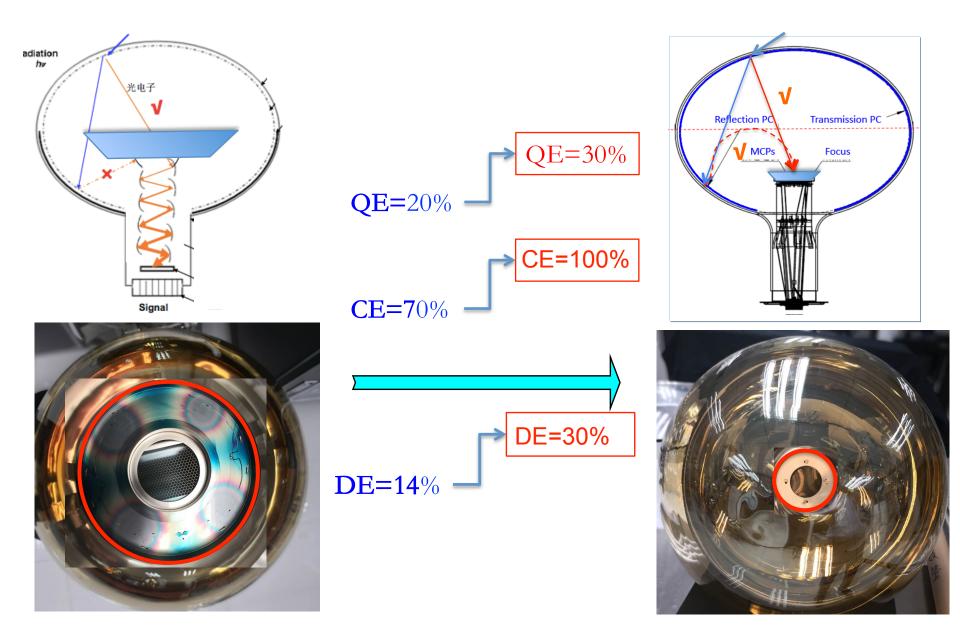
IN 2013, the 8 inch MCP-PMT was produced with two shapes, vertical and horizontal ones, both of these two types of MCP-PMTs has the best MCP modules for the single photon detection, and the P/V of the SPE is better than the Dynode-PMTs.

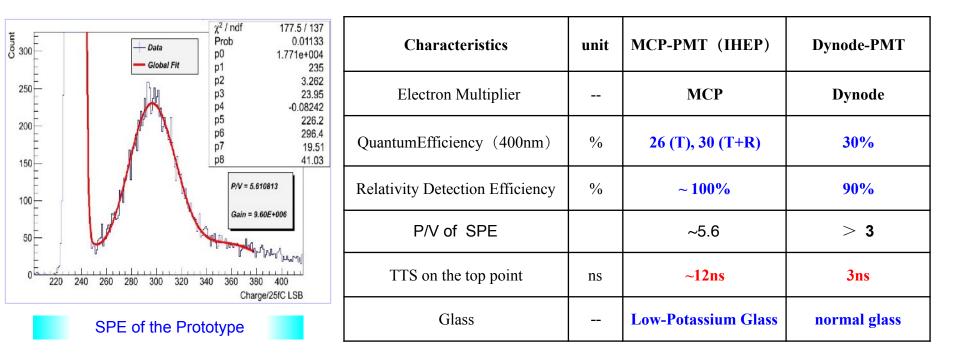


The performances of these types of 8 inch MCP-PMT were as good as the ones of normal dynode-PMTs, but the CE was only 70%, not the same as we designed.

HV	Gain	P/V	Rise Time	Fall Time	Dark rate @1E7 Gain(0.25PE)	QE@400nm	CE
2100V	~1E7	~4	~1.3ns	~8.8ns	~3kHz	25%	70%

1.3 the 20 inch prototypes with normal performance--2014


IN 2014, the 20inch glass was produced, and also the 20 inch MCP-PMT was produced with two shapes, vertical and horizontal ones, and both of them were good at the SPE test.


- The performances of these types of 20 inch MCP-PMT were as good as the 8 inch ones.
- > And we did lots of work to improve the QE and CE, but the CE was still only 70%.

HV	Gain	P/V	Rise Time	Fall Time	Dark rate @1E7 Gain(0.25PE)	QE@400nm	CE
2000V	~1E7	~3	~1.2ns	~15ns	~50kHz	25%	70%

In 2015, the MCP-PMT work group did the best to improve the CE of the MCP modules, and finally, the CE of the MCP-PMTs was improved from 70% to 100% successfully.

1.4 the 20 inch prototypes with HDE performance--2015

- The QE of the Trans.+Ref. photocathode together could be 30% @400nm; The CE of the MCP increased to 100%, so the total DE of the MCP-PMT could be 30%@400nm;
- The Glass of the MCP-PMT is also special with the low potassium glass to decrease the radioactivity of the PMT materials.
- Because of the large area Trans.+Ref. photocathode, the high collection efficiency MCPs, the small electronic focus, the TTS of the 20inch MCP-PMT was worse.

1.5 PMT Purchasing of JUNO

Characteristics	unit	MCP-PMT (NNVC)	R12860 (Hamamatsu)	Decision based on
Detection Eff.(QE*CE*area)	%	27%, > 24%	27%, > 24%	risk,
P/V of SPE		3.5, > 2.8	3, > 2.5	
TTS on the top point	ns	~12, < 15	2.7, < 3.5	price,
Rise time/ Fall time	ns	R~2 , F~12	R~5, <7; F~9, <12	performance merit for p
Anode Dark Count	Hz	20K, < 30K	10K, < 50K	per for mance mer it for p
After Pulse Rate	%	1, <2	10, < 15	~
Radioactivity of glass	ppb	238U:50 232Th:50 40K: 20	238U:400 232Th:400 40K: 40	***

physics

15k MCP-PMT (75%) from NNVT

5k Dynode (25%) from Hamamatzu

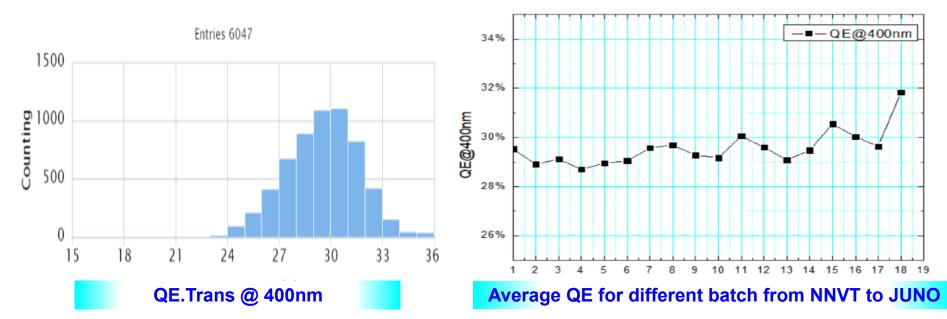
Outline

1. The R&D of the MCP-PMT for JUNO; (2009-2015)

the 8 inch, the 20 inch, the high PDE prototypes;

2. The Mass production and Batch test; (2016-2019)

3. The improvement of the MCP-PMTs; (2016-2018)


the High QE prototypes, the fast prototypes;

2.1 The Batch Result —Quantum Efficiency (QE)

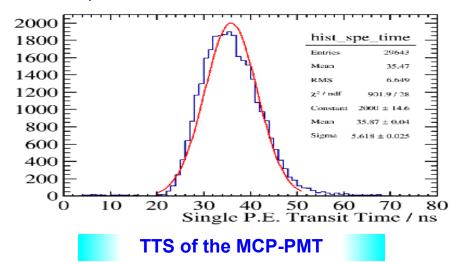
20 inch PMTs	Dynode-PMTs	MCP-PMT prototype	~6047 MCP-PMTs
QE.Trans @ 400nm	30%	26%	29.6%
Uni-QE @ 400nm	< 10%	7.8%	7.2%

- The Quantum Efficiency of the photocathode is really improved during the mass production process. The QE of the transmission photocathode is achieving 30%@ 400nm.
- -The DE Uniformity of the PMT is affected by the QE Uniformity of the Photocathode; We need to control the Uniformity of the QE less in 10%,

The average data of 6K pics is about 7.2%, which is better than the Dynode-PMT.

2.2 The Batch Result — The time characteristics of the PMTs

20 inch PMTs	Dynode-PMTs	MCP-PMTprototype	~6047 MCP-PMTs
TTS @ FWHM	2.8 ns	13.2 ns	20.2ns
TTS @sigma	1.19 ns	5.62ns	8.61ns
RT @ Gain~1X10^7	6.7 ns	1.2 ns	1.4 ns
FT @ Gain~1X10^7	17.7 ns	10.2 ns	25.4 ns


-The Rise time of the MCP-PMTs is really fast within **1.4n**s for the average of 6K pics.

-For better shape of the waveform, the Fall time is enlarged from 10ns to 25ns in production.

--> the large area photocathode for better QE,

--> the special MCPs for better CE,

--> the special HV distribution for better SPE,

The TTS of the MCP-PMTs is also enlarged:

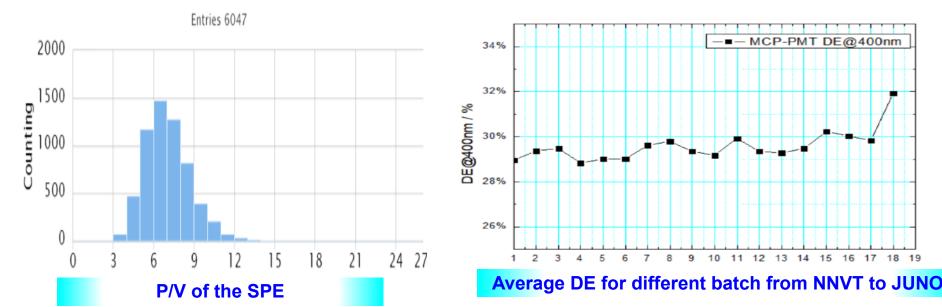
from the prototype data 13ns to

20ns in mass production process

Waveform of the MCP-PMT

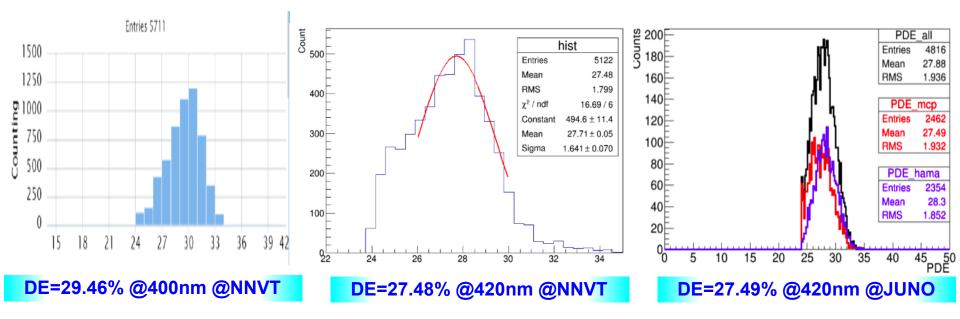
2.3 The Batch Result — The P/V, DE of the SPE

20 inch PMTs	Dynode-PMTs	MCP-PMT prototype	~6047 MCP-PMTs
P/V of SPE @ Gain~1X10^7	3.7	5.6	7.0
DE @ 400nm	27%	26%	29.5%


-With the special MCP modules, the special HV distribution of the PMT,

the P/V of the SPE is improved from 5 to 7 in the mass production process, better than the Dynode one.

- -With the special MCP modules, the CE of the MCP modules is about 100%;
- -With the improved technology of photocathode, the QE is increasing to 30%;


the DE of the MCP-PMTs is improved from 26% to nearly 30% (the average data of the 6K pics)

-the improving of the Photocathode Quantum Efficiency is continuing for better

-The DE of the MCP-PMTs from the NNVT bath test is about 29.46% @ 400nm;

But the JUNO ordered the DE@420nm.

The QE in different wavelength with different DE. The peak wavelength of the PC is about 390nm~400nm, so the data of the DE@420nm is smaller than the DE@400nm;
The average DE@420nm of 5K MCP-PMTs is about 27.48% in the NNVT batch test.
The average DE@420nm of 2.5K MCP-PMTs is about 27.49% in the JUNO batch test;

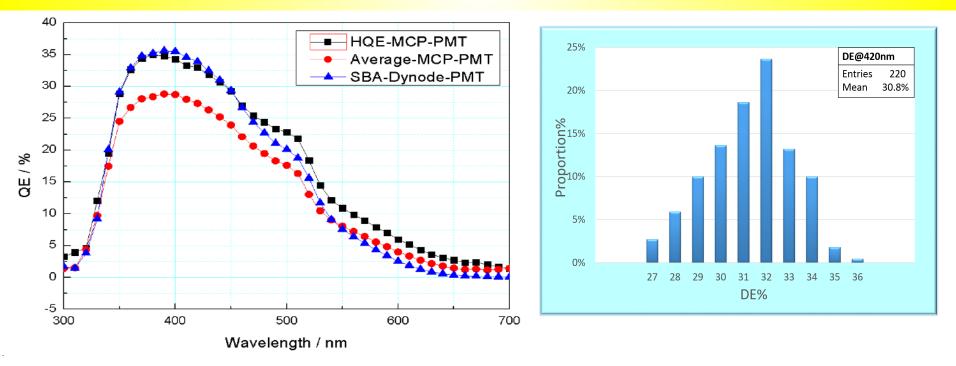
More about the PMTs tested in JUNO, see the Wei Wang & Zhonghua Qin's talk in the Detector section.

2.4 the MCP-PMT parameters Test in NNVT for JUNO

PMT Parameters	data in Contract	Prototype	6000pic PMTs
Quantum Efficiency - QE@400nm	≥ 26.5%	~ 26%	29.6%
QE Uniformity	≤ 15%	≤ 10%	≤7.2%
SPE-P/V	≥ 2.8	~ 5.6	~ 7.0
HV@1X10^7	~ 2800V	~ 1930V	~ 1745V
Detection Efficiency @400nm	?	~26%@400nm	~ 29.5%@400nm
Detection Efficiency @420nm	≥ 24%@420nm	?	~ 27.5%@420nm
Dark Rate	≤ 50KHz	~ 30KHz	~ 36KHz
TTS	≤ 15ns	~12ns	~20ns
APR	≤ 5%	~ 2.5%	≤1%
Linearity <10%	≥ 1000pe	~ 1000pe	~ 1200pe
Rise Time	≤ 2ns	~ 1.2ns	~ 1.4ns
Fall Time	≤ 12ns	~10.2ns	~25ns

Outline

1. The R&D of the MCP-PMT for JUNO; (2009-2015)


the 8 inch, the 20 inch, the high PDE prototypes;

2. The Mass production and Batch test; (2016-2019)

> 3. The improvement of the MCP-PMTs; (2016-2018)

the High QE prototypes, the fast prototypes;

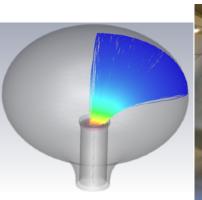
3.1 the improvement of the QE & DE for JUNO

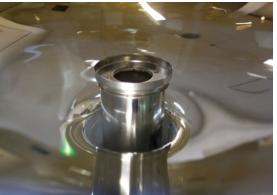
-The QE of the PC is improved from 30% to 35%@peak wavelength for the type of HQE-MCP-PMT.

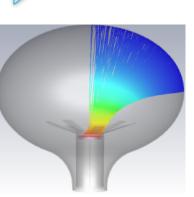
The DE of the PMT is also improved by the increasing QE;

The average DE=27.5%@420nm of 6K pics normal MCP-PMTs

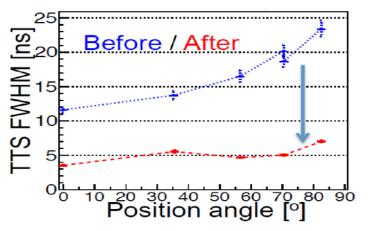
The average DE=30.8%@420nm of 200 pics HQE-MCP-PMTs

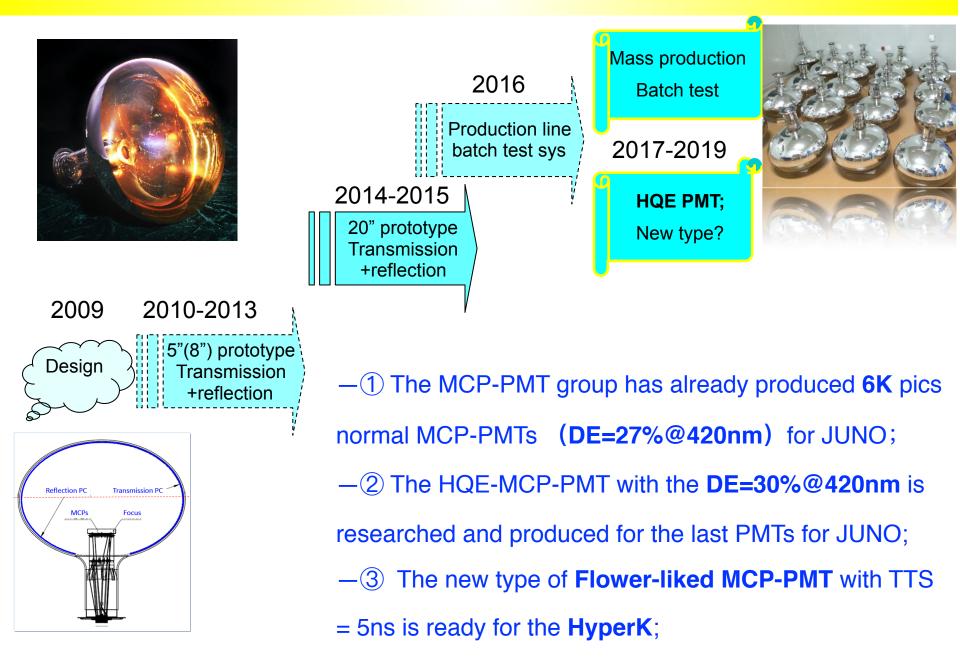

PMTs	Hamamatsu	MCP-PMT prototype	~6000 Normal MCP-PMTs	~200 HQE-MCP-PMT
QE @ 400nm	30%	26%	29.5%	32%
DE @ 420nm	28%		27.5%	30.8%


3.2 the improvement of the TTS for HyperK


Normal focusing electrode

Flower-like focusing electrode





By changing the constructer of the focusing electrode, using the flower-like one, the TTS of the PMTs is improving from 20ns to 5ns, but the CE of the prototype is decreasing to 85%,
By decrease the area of the photocathode for better TTS, the dark rate of the PMT also much better than the normal one, from 40KHz to 20KHz.

Chamataristics	Normal		Flower-like
Characteristics	focusing electrode		focusing electrode
QuantumEfficiency (400nm)	~30%		~30%
Relativity Detection Efficiency	~ 100%	♦	85%
P/V of SPE	~ 7	♦	~ 5
TTS on the top point	~20ns		5 ns
Anode Dark Count	~40KHz		~20KHz

The summary of the R&D of the MCP-PMT

GHT VISION OUP CO., LTD NORTH NIGHT VISION TECHNOLOGY CO., LTD

North Night Vision Technology Co. Ltd (NVT) is the major manufacturer far image intensifier & its high power supply. MCP and FOP in the world, NPT herefits own SC of experience in researching & designing, manufacturing, manieting and servicing for image intrasiliers. The product range incluios 14 con. 24 gen. supergen, 2, high performance with sories of 15mm, 18mm, 25mm 20/30mm and 40mm with water inverting , non inverting, staging and sylvid formats and ICCD night when components NVT's new products include microchannel plata photomy high- (VCP-PMTL InGaAs Solid State Low-Light Device, FIS Solid-State Low Light core > NVT's Products are conformer, to Military Standards

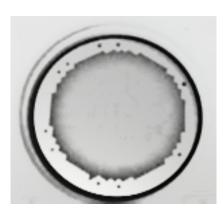
> Thanks for your attention! Any comment and suggestion are welcomed!

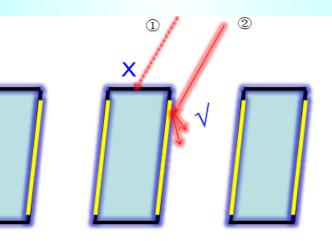
Flower-liked

20"MCP-PMT

for HyperK

HQE in high energy pag **20"MCP-PMT** spectrum sheet.com very high quan Using S electron amplifier, the for JUNO officient superior temporal gain Luu fier channel. restons le is optimized stage lecently. by stac efficiency has reached antonly8" & 20" MCP PMT are


MCP-PMT has a major

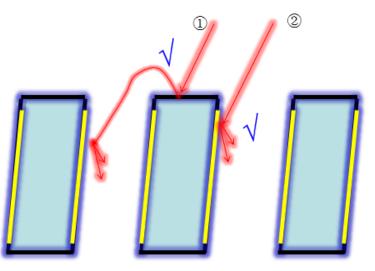

TH NIGHT VISION TECHNOLOGY CO., LTD

Many Thanks!

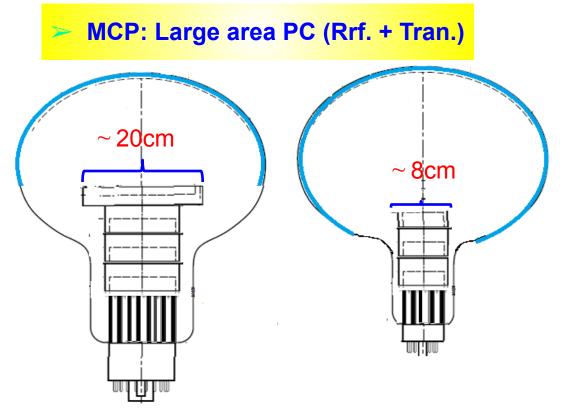
How to improve the Collection Efficiency of the MCP modules (2015)

CE = 70%

The p.e. into the channel directly ~70%



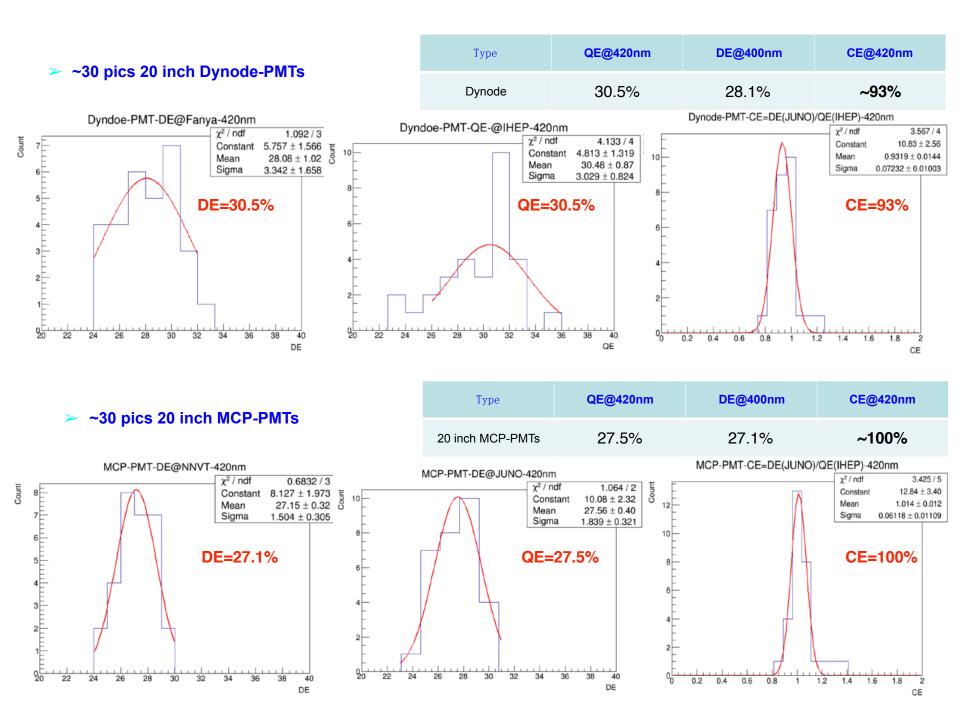
The Diameter of the MCP: **33mm; 50mm;** The Diameter of the Hole: **6um; 8um; 10um; 12um;** The Inclined Angle: **0°**; **8°**; **12°**;


The Open Area Ratio: 60%; 77%;

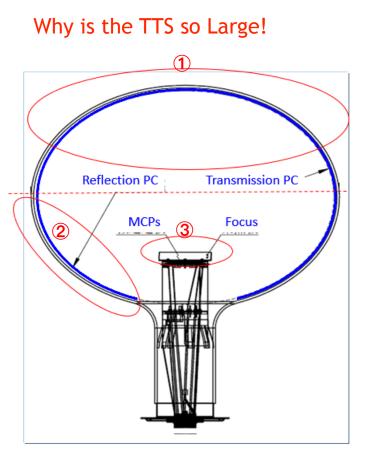
The Depth of output electrode:.....

CE = 100%

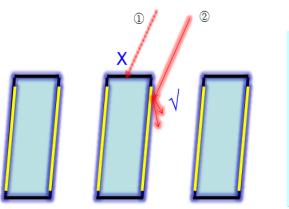
The p.e. into the channel directly \sim 70% The p.e. from the electrod indirectly \sim 30%

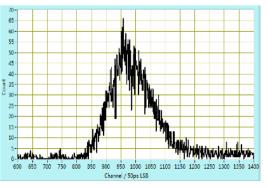

Prototype	Relativity DE	Relativity DE
Dynode-PMT	100%	90%
MCP-PMT	110%	100%

> Dynode: A mesh covering the dynode



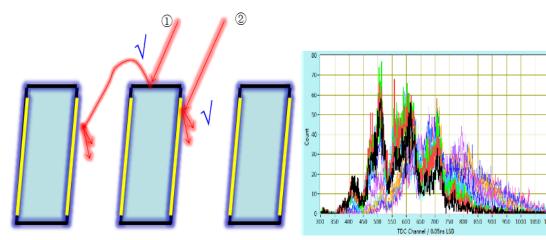
MCP: Special MCP for CE~100%




> How to improve the TTS

The prototype

--> with Trans.+Ref.PC for better QE;
--> with special MCP for better DE;
But the TTS will be worse!



> With the contribution of the second electron from the electrode (30%),

the spectrum of the TTS present several peaks,

which made it's TTS worse.

