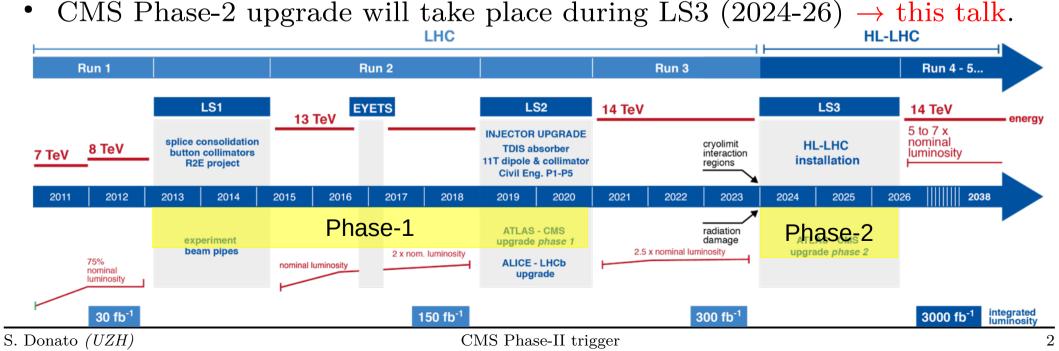
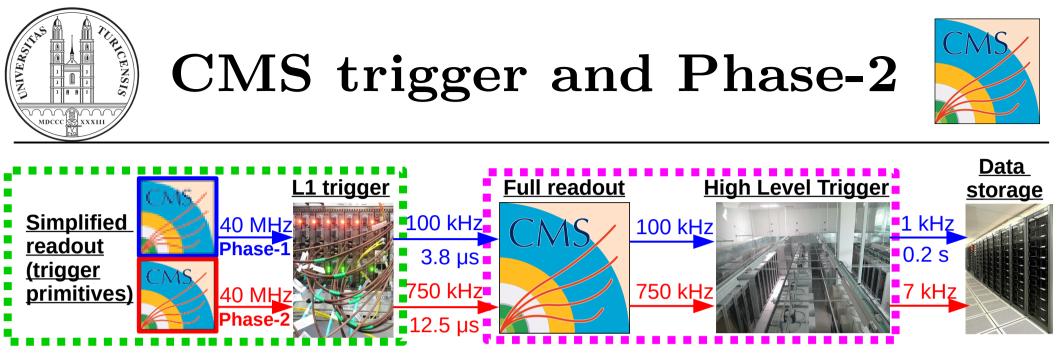

ICHEP 2018 - Seoul (South Korea) - 5^{th} July 2018

Design of the CMS upgraded trigger from Phase I to Phase of the LHC

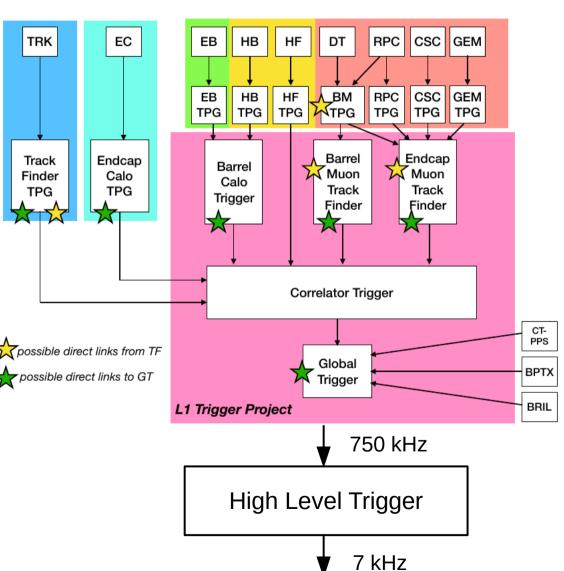
Silvio Donato (University of Zurich) on behalf of the CMS Collaboration



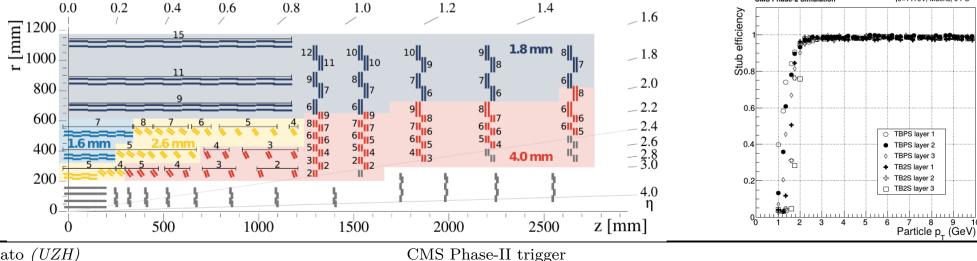


High Luminosity LHC

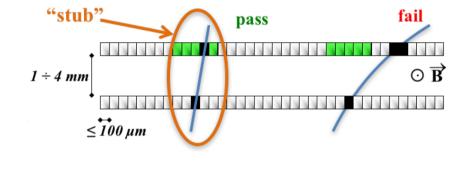
- LHC luminosity steadily increases \rightarrow experiments needs to be upgraded.
- High Luminosity LHC will start in 2026,
 - expected lumi: 7 (5) \cdot 10³⁴ cm⁻²s⁻¹ \rightarrow pile-up \sim 200 (140).
- CMS Phase-1 upgrade scheduled between LS1 and LS2,
 - L1 trigger fully upgraded during 2015-16 stop \rightarrow Olivier's talk.


- Highlights of CMS Phase-2 trigger upgrade:
 - larger L1 trigger rate / detector readout rate (100 kHz \rightarrow **750 kHz**);
 - larger L1 trigger latency $(3.8 \ \mu s \rightarrow 12.5 \ \mu s) \rightarrow more sophisticated algo;$
 - more info at L1 trigger \rightarrow L1 tracks, higher granularity;
 - larger HLT computing power to cope with larger rate and pile-up;
 - more HLT output rate $(1 \text{ kHz} \rightarrow 7.5 \text{ kHz}) \rightarrow \text{more offline CPU power.}$

CMS Phase-2 trigger

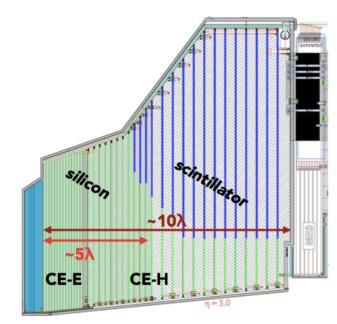

- Detector (simplified readout).
- Trigger Primitive Generator (TPG),
 - eg. track doublets.
- Combination of TPG,
 - eg. calorimetric tower.
- Correlator Trigger,
 - combine inputs from detectors;
 - possibility to run Particle Flow.
- Global Trigger \rightarrow L1 decision.
- High Level Trigger.

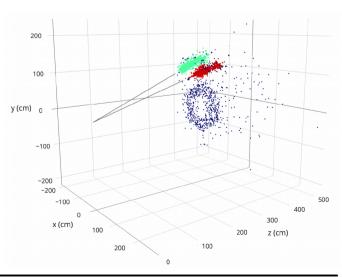
L1 Phase-2 detector upgrades and single-detector object performance


L1 trigger tracker

- CMS outer tracker will be made of strip-strip and pixel-strip modules.
- Each pair finds hit doublets compatible with a high p_{T} track.
- About 15k doublets reconstructed per event
 - expected 200 tracks on average with $p_T > 2$ GeV @ 40MHz.

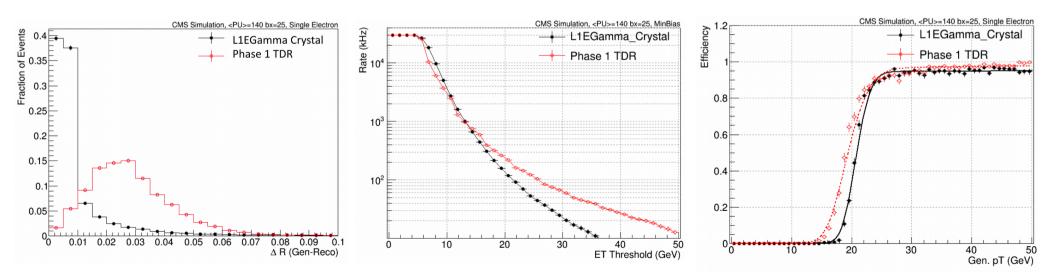
S=14TeV Muons 0 PL


CMS Phase-2 Simulation



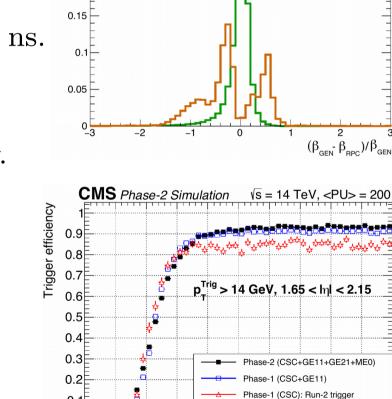
L1 high-granularity calorimeter

- High granularity calorimeter in end-cap region:
 - silicon and scintillator as active material,
 - 52 sensitive layers \rightarrow 6M channels!
- Trigger cell granularity: 4 cm² silicon,
 - 14 electromagnetic + 24 hadronic layers @ L1;
 - trigger ready to read 900k channels.
- Huge amount of data \rightarrow zero suppression 2 MIP.
 - Suppressed channels summed over large area \rightarrow full coverage for E_T miss, small bandwidth.
- Trigger Primitive Generator:
 - 2D hits in each layer \rightarrow combined in 3D clusters;
 - E_T , EM fraction, shower position, quality, ...



L1 ECAL barrel calorimeter

- Electromagnetic barrel calorimeter.
 - Higher granularity: $5x5 \text{ crystal} \rightarrow \text{single crystal}$.
 - Trigger Primitive Generator:
 - baseline: one for each 61200 crystals (E_T , time, spike flag);
 - possible clustering: 1000 clusters + unclustered energy info.
- Large improvement of single e/γ resolution in position and p_T .


L1 muon detectors

CMS Phase-2 Simulation $\sqrt{s} = 14 \text{ TeV}, \langle PU \rangle = 0$

Current:

- DT + RPC, DT stub for triggering in barrel;
- CSC + RPC, CSC stub for triggering in endcap.
- Improved RPC (iRPC) time res. 25 ns \rightarrow 1.5 ns.
- Improved spatial resolution in DT.
- Combination $DT + iRPC \rightarrow better$ efficiency.
- New GEM detectors in endcaps:
 - combination with CSC to recover efficiency (GEM-CSC stub);
 - clusters send to L1 correlator trigger.
- L1 muons can be matched with L1 tracks with L1 trigger correlator \rightarrow better p_T resolution.

10

15

20

25

30

35 40

hase 1 - 25ns time resolution Phase 2 - 1.5ns time resoluti

Entries [a.u.]

0.2

0.1

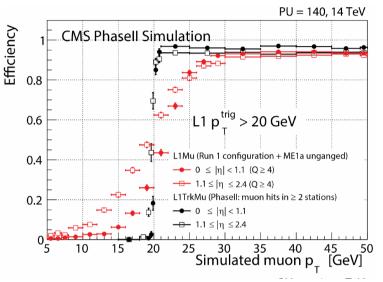
45 True muon p_ [GeV]

Track-trigger improvements

CMS L1 trigger

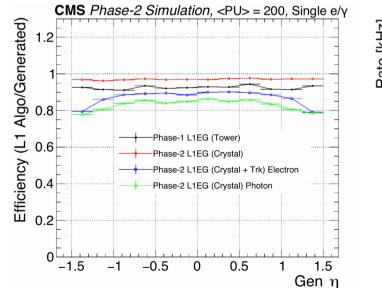
Signal = Photons from H $\rightarrow \gamma \gamma$, < PU > = 140

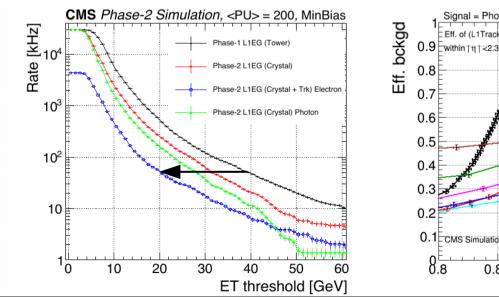
Eff. of (L1Track) rel. isol. on top of SingleEG2


CMS Simulation, Phase-2

0.85

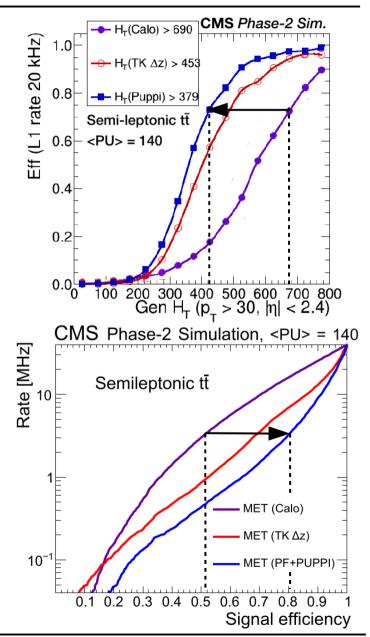
0.9


0.95


Eff. signal

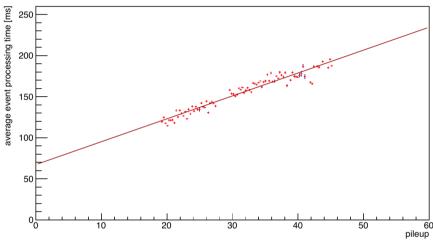
- Large improvement on muon $p_{T}!$
 - Electron and photon identification.
 - Rate reduction from track isolation.
 - Possibility to reject pile-up jet,

CMS Phase-II trigger


Particle-flow and PUPPI (Pileup Per Particle Identification) at L1 trigger

CMS L1 Tau

- With L1 tracks, we have all elements to run Particle Flow and PUPPI algorithms,
 - preliminary proof-of-principle completed.
- Hadronic variables (ME_T and H_T) benefit largerly of this improvement.
- Larger efficiency obtained at fixed rate with PF+PUPPI,
 - even respect to ME_T and H_T reconstructed summing p_T of tracks from primary vertex.



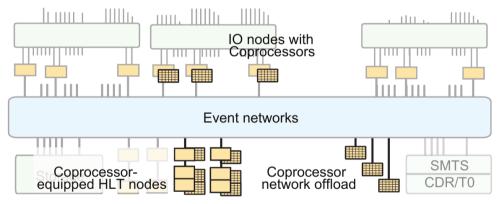
High Level Trigger

UNIVERSE

High Level Trigger

- The computing power required by the HLT will increase by a factor ~ x20:
 - x2.5 from larger pile-up;
 - x7.5 from larger L1 input rate.
- The expected HLT output rate will be about 7.5 kHz.
- The larger rates and event size increase both the DAQ bandwidth and storage throughput of about a factor 20.

	LHC	HL-	LHC
CMS detector	Run-2	Pha	se-2
Peak $\langle PU \rangle$	60	140	200
L1 accept rate (maximum)	100 kHz	500 kHz	750 kHz
Event Size	2.0 MB ^a	5.7 MB ^b	7.4 MB
Event Network throughput	1.6 Tb/s	23 Tb/s	44 Tb/s
Event Network buffer (60 seconds)	12 TB	171 TB	333 TB
HLT accept rate	1 kHz	5 kHz	7.5 kHz
HLT computing power ^c	0.5 MHS06	4.5 MHS06	9.2 MHS06
Storage throughput	2.5 GB/s	31 GB/s	61 GB/s
Storage capacity needed (1 day)	0.2 PB	2.7 PB	5.3 PB



High Level Trigger

- The usage of heterogeneous architectures for the HLT is under consideration
 - rationale: usage of coprocessors to run a specific program.
- Possible configuration:
 - Coprocessor-equipped HLT nodes;
 - Coprocessor network offload;
 - IO nodes with coprocessor.
- Example: GPUs to run track seeding.
 - Processing rate of 8 GPUs is x10.6 larger than 24-core server.
 - GPU can process x4.6 rate of the CPU per unit cost,
 - +30% per electric power

Conclusions

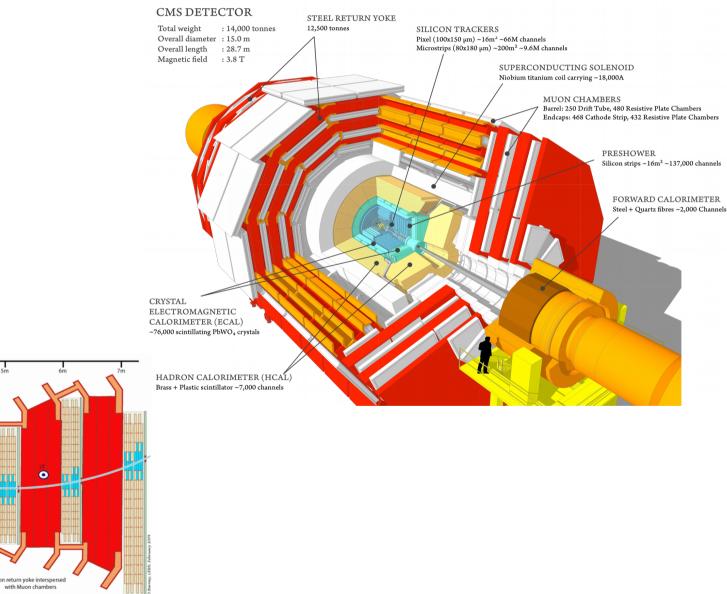
Conclusions

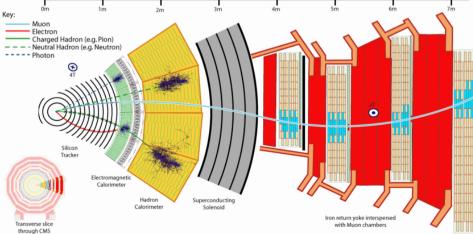
- The HL-LHC is starting in eight years from now,
 - the expected luminosity is $7 \cdot 10^{34}$ cm⁻²s⁻¹ (pile-up ~ 200).
- The CMS trigger will be upgraded to cope with such a large luminosity:
 - L1 accept rate (detector readout) will increase 100 kHz \rightarrow 750 kHz;
 - L1 trigger has access to more data from subdetectors.
- Expected big improvements from L1 tracks and higher granularity:
 - better muon p_T resolution, track isolation, and electron/photon identification;
 - possibility to run Particle Flow and PUPPI \rightarrow better ME_T and H_T;
- HLT computing power and IO throughput need to be upgraded:
 - usage of heterogeneous architectures is under study.
- The expected CMS Phase-2 trigger performance is impressive,
 - fundamental to have a successful HL-LHC physics program;
 - hard work ahead of us to make it real!

감사합니다

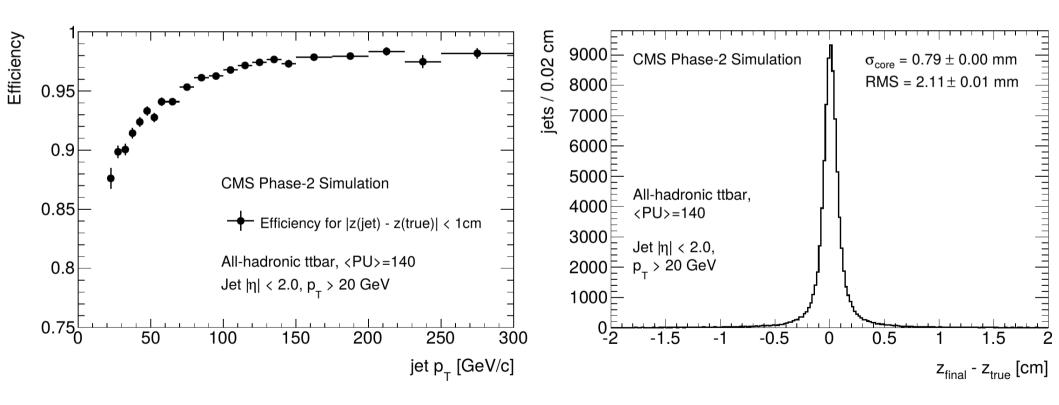
Thank you for you attention!

References


CERN-LHCC-2017-013: L1 Trigger upgrade, Interim TDR CERN-LHCC-2017-009: Tracker upgrade, TDR CERN-LHCC-2017-014: DAQ upgrade, Interim TDR CERN-LHCC-2015-10: Technical Proposal


Backup

CMS experiment


S. Donato (UZH)

CMS L1 Vertex

- Jet-vertex association \rightarrow pile-up jet rejection

Phase-2 L1 Menu

$L = 5.6 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}, \langle PU \rangle = 140$		L1t	rigger
$L = 8.0 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}, \langle PU \rangle = 200$	with L1 tracks		
			Offline
Trigger			threshold(s)
algorithm	[kł	-Iz]	[GeV]
$\langle PU \rangle$	140	200	
Single Mu (tk)	14	27	18
Double Mu (tk)	1.1	1.2	14 10
Ele^{*} (iso tk) + Mu (tk)	0.7	0.2	19 10.5
Single Ele* (tk)	16	38	31
Single iso Ele* (tk)	13	27	27
Single γ^* (tk-iso)	31	19	31
Ele* (iso tk) + e/γ^*	11	7.3	22 16
Double γ^* (tk-iso)	17	5	22 16
Single Tau (tk)	13	38	88
Tau (tk) + Tau	32	55	56 56
Ele^{*} (iso tk) + Tau	7.4	23	19 50
Tau $(tk) + Mu (tk)$	5.4	6	45 14
Single Jet	42	69	173
Double Jet (tk)	26	43	2@136
Quad Jet (tk)	12	45	4@72
Single ele* (tk) + Jet	15	15	23 66
Single Mu (tk) + Jet	8.8	12	16 66
Single ele [*] (tk) + $H_{\rm T}^{\rm miss}$ (tk)	10	45	23 95
Single Mu (tk) + $H_{\rm T}^{\rm miss}$ (tk)	2.7	8	16 95
$H_{\rm T}$ (tk)	13	24	350
Rate for above triggers*	180	305	
Est. rate (full EG eta range)		390	
Est. total L1 menu rate (× 1.3)	260	500	

Trigger primitive word

Table 8.1: Baseline L1 Track word definition. Note that *t* corresponds to $\sinh(\eta)$.

Quantity	N bits
p_{T}	16
Charge	1
ϕ_0	17
d_0	10
Z0	12
t	12
χ^2	10
Stub p_T consistency	5
Hit mask	15
Spare	2
Total	100

Table 8.2: Barrel ECAL crystal word definition.

Quantity	N bits
$E_{\rm T}$	10
Time	5
Spike flag	1
Total	16

Table 8.3: Barrel ECAL cluster word definition.

Quantity	N bits
E_{T}	10
Time	5
η	8
φ	8
N _{crystal}	8
Spike flag	1
Total	40

Trigger primitive word

Table 8.4: Baseline Barrel HCAL (HB) and Forward HCAL (HF) tower TP word definition.

Quantity	N bits (HB)	N bits (HF)
E_{T}	10	8
Feature bits	6	2
Total	16	10

Table 8.5: Baseline Endcap Calorimeter cluster definition.

hable olor buschnie Endeup Calorinieter erabter deminiatin			
Quantity	N bits	Comment	
$E_{\rm T}$	2×16	with and without PU subtraction	
Endcap	1		
$f_{\rm EE}$	13	$E_{\rm T}$ fraction in EE	
f _{BH}	12	$E_{\rm T}$ fraction in BH	
Lmax	6	Max energy layer	
η	11	Shower start	
φ	11	Shower start	
z	10	Shower start	
N _{cells}	8		
Quality	12		
Extra flags	12		
Minimum total	128		

Table 8.6: Muon Drift Tube stub word definition.

muon brint rube ot	ab mora
Quantity	N bits
Quality	4
Bending pattern	9
Global ϕ	17
Global θ	17
Time	15
Chamber ID	8
Total	70

Table 8.7: Existing Muon Cathode Strip Chamber stub word definition. Note that ALCT corresponds to anode wires, CLCT corresponds to cathode strips, (D)CFEB corresponds to front end board.

Quantity	N bits
ALCT key layer wiregroup	7
CLCT bending pattern	4
Valid pattern flag	1
Quality	4
(D)CFEB number	3
Key layer half-strip	5
CLCT bending direction	1
Combined synchronization error flag	1
ALCT BX flag	1
CLCT BX flag	1
Trigger chamber ID	4
Total	32

Table 8.8: Muon Resistive Plate Chamber (RPC) trigger hit word definition.

Quantity	N bits
Cluster centre	8
Cluster size	3
Time	4
Total	15

Table 8.9: Improved RPC (iRPC) trigger hit word definition.

Quantity	N bits
Detector ID	5
ASIC ID	2
Channel ID	6
Signal time rising edge	14
Signal time falling edge	14
Total	41

Table 8.10: Muon Gas Electron Multiplier (GEM) trigger cluster digi definition.

Quantity	N bits
ϕ sector	2
η partition	3
Pad number	6
Cluster size	3
Total	14

Table 8.11: GEM-CSC stub word definition. Note that ALCT corresponds to anode wires, CLCT corresponds to cathode strips, (D)CFEB corresponds to front end board.

Quantity	N bits
ALCT key layer wiregroup	7
CLCT bending pattern	4
Quality	4
(D)CFEB number	3
Key layer half-strip	6
CLCT bending direction	1
Combined synchronization error flag	1
ALCT BX flag	1
CLCT BX flag	1
Trigger chamber ID	4
Total	32

Table 8.12: Muon Endcap ME0 Station stub word definition.

•	
Quantity	N bits
ϕ coordinate	10
η coordinate	5
Pattern	7
Quality	2
Total	24