Construction and performance of the Top and Bottom Counting Detectors for the ISS-CREAM experiment

Hongjoo Kim

Kyungpook National University
On behalf of ISS-CRFAM Collaboration

ICHEP2018, Seoul, KOREA July 4- 11, 2018

Introduction

- ISS-CREAM (Cosmic Ray Energetics And Mass on the International Space Station)
 - ISS-CREAM instrument was launched on 14th August, 2017
 - It measures the energy spectral features from 10 GeV to > 1000 TeV and composition that might be related to the supernova acceleration limit
 - It provides keys to understand the origin, acceleration and propagation of the cosmic rays

Presentation by Prof Seo on Sat. 10 am

Jul. 06, 2018 ICHEP 2018

CREAM instrument at ISS

PENNSTATE

Seo et al. (CREAM Collaboration) Adv. in Space Res., 53/10, 1451, 2014

 cm^2)

Top/Bottom Counting Detector (TCD/BCD)

Goals

- e/p separation for electron and gamma-ray physics
- Provide a redundant trigger in addition to the CAL trigger
- Provide a low energy electron trigger

Instrument

- Plastic scintillator coupled with 2-dimensional photodiode arrays (20 \times 20)
- $500 \times 500 \times 5$ mm³ and $600 \times 600 \times 10$ mm³ plastic scintillator for TCD and BCD, respectively
- 23 mm imes 23 mm imes 650 μ m photodiode

Method

Electron and proton make different shower shapes at TCD and BCD

Jul. 06, 2018

TCD/BCD Block Diagram

ICHEP 2018 5

TCD/BCD Trigger diagram

TCD/BCD Construction

Construction at KNU

- The plastic scintillators are wrapped with reflector to prevent light loss
- The plastic scintillator is attached to the PD by using a silicon optical adhesive material
- PD is attached to the PCBs by using a conductive epoxy
- A plastic foam is placed between the Al enclosure and detector as a bumper to reduce the shock at launching

Choard + Photodiode + Plastic scintillator + Reflector (VM2000 ESR film)

TCD/BCD Environmental Test for Space Env.

Vibration test @Keymyung Univ.

- Thermal Vacuum test
- @ Korea Aerospace Research Institute

- The TCD/BCD need to pass space qualification.
 - 1) Radiation hardness > 1 kRad,
 - 2) Vibration: Need to survive during launch
 - 3) Thermal Vacuum: -40 to 50 degree, <10⁻⁵ Torr
- Most of pedestal RMSs are less than 20 ADC before and after the test.
- Similar results are obtained after detector integration and environmental test at GSFC.

ICHEP 2018

TCD/BCD integration to CREAM detector

e/p Separation Study using simulation data

Boosted Decision Tree Method

Using GEANT3 data

Energy (GeV)	Accepted electron (number of events)	Selected proton (number of events)	Electron efficiency (%)	Proton rejection power
30	9439	92	94.4 ± 0.2	$(1.03 \pm 0.11) \times 10^2$
50	9442	61	$\textbf{94.4} \pm \textbf{0.6}$	$(1.55 \pm 0.20) \times 10^2$
70	9434	51	94.3 ± 0.5	$(1.85 \pm 0.26) \times 10^2$
120	9406	44	$\textbf{94.1} \pm \textbf{0.4}$	$(2.14 {\pm}~0.32) \times 10^{2}$
150	9436	35	$\textbf{94.4} \pm \textbf{0.4}$	$(2.70 \!\pm 0.46) \times 10^2$
300	9335	31	$\textbf{93.3} \pm \textbf{0.3}$	$(3.01 {\pm}~0.54) \times 10^{2}$
900	9276	14	$\textbf{92.8} \pm \textbf{0.1}$	$(6.6 \pm 1.8) \times 10^{2}$
1,200	9239	11	$\textbf{92.4} \pm \textbf{0.1}$	$(8.4 \pm 2.5) \times 10^{2}$
2,500	9246	9	$\textbf{92.5} \pm \textbf{0.1}$	$(1.03 \!\pm 0.34) \times 10^3$
5,000	9218	8	92.2 ± 0.1	$(1.15 {\pm}~0.41) \times 10^{3}$
10,000	9195	8	92.0 ± 0.1	$(1.15\pm 0.41) \times 10^3$

- Proton rejection power : electron fraction / proton fraction
- Electron fraction: # of selected e / total # of e in each energy
- Proton fraction: # of selected p / total # of p in each energy

- The events considered electrons are closed to 1 and protons are closed to -1 in BDT distribution
- The electron efficiency is about 93% and the proton rejection power is improved with increasing energy. We select electron and proton when BDT is larger than 0

Proton rejection power

TCD/BCD Status

- The Pedestal RMS range of TCD/BCD is similar before/after launching
- The pedestal RMS value of most TCD/BCD channels are less than 20

MIP Signal at TCD/BCD

Ground muon test

TCD/BCD Status in SAA

 When the ISS is in SAA, the trigger rate of TCD/BCD is increased (5~10 times)

Elow trigger performance

Summary

- The ISS-CREAM can measure the cosmic-rays in high energy region and was launched on 14th Aug 2017.
- The TCD/BCD was constructed for electron and gamma-ray physics with e/p separation and providing triggers.
- The TCD/BCD detectors are successfully constructed and passed critical requirements for space launch qualification.
- e/p separation is studied with simulation and the rejection factor better than 800 with 93% efficiency can be achieved with 1.2 TeV electron using BDT method.
- The TCD/BCD have similar noise level before and after lunch and the MIP signals at the ISS can be identified.
- Low energy trigger is working fine and optimization of high energy trigger is on going.
- Analysis is ongoing for e/p separation.

Thank you for attention