Construction and performance tests of the COMET CDC

Manabu Moritsu (KEK, Japan)
On behalf of the COMET Collaboration
39th International Conference on High Energy Physics (ICHEP2018)
7th July 2018, COEX, Seoul, Korea

μ-e conversion \& COMET

COMET Phase-I Layout

COMET talk by D.Grigoriev 15:40, 7 July @ 102

- The COMET experiment at J-PARC searches for the neutrinoless coherent transition of a muon to an electron in the field of an aluminum nucleus, which violates the lepton flavor conservation and has never been observed yet thus far.

$$
\mu^{-} N \rightarrow e^{-} N
$$

- The conversion rate is predicted to be enhanced in new physics models beyond the Standard Model, while the process is extremely suppressed in the Standard Model.
- The goal of the COMET is to explore the μ-e conversion with single event sensitivity of 3×10^{-15} and 3×10^{-17} in Phase-I and Phase-II, respectively, which is 100 and 10,000 times better than the current limit.
- COMET Phase-I:
- J-PARC 8 GeV -3.2 kW proton beam \rightarrow Capture Solenoid \rightarrow Transport Solenoid (90-deg bend) $->$ Cylindrical Detector System

Signal \& background

- The signal of the μ-e conversion is $\sim 105 \mathrm{MeV}$ mono-energetic electrons,

$$
E_{\mu e}=m_{\mu}-B_{\mu}-E_{\mathrm{rec}}=104.97 \mathrm{MeV} \text { for } \mathrm{Al}
$$

- while the backgrounds are

1. Decay-in-orbit (DIO) electrons
2. Prompt beam-related BG
3. Cosmic-ray induced BG.

Signal \& background

- The signal of the μ-e conversion is $\sim 105 \mathrm{MeV}$ mono-energetic electrons,

$$
E_{\mu e}=m_{\mu}-B_{\mu}-E_{\mathrm{rec}}=104.97 \mathrm{MeV} \text { for } \mathrm{Al}
$$

- while the backgrounds are

1. Decay-in-orbit (DIO) electrons

Inevitable physical BG
2. Prompt beam-related BG
3. Cosmic-ray induced BG.

- In order to distinguish the signal from the background, good momentum resolution of $200 \mathrm{keV} / \mathrm{c}$ is required.

Muon Decay in Orbit (DIO)

[^0]
COMET CDC

- In the COMET Phase-I, the converted electrons, which possess monochromatic momentum of $105 \mathrm{MeV} / \mathrm{c}$, are detected with a cylindrical drift chamber (CDC) in a solenoidal magnetic field of 1 T .
- Trigger signals are issued by a combination of scintillation \& Cherenkov hodoscopes placed at inner side both upstream \& downstream of CDC.
- In this low momentum region around $105 \mathrm{MeV} / \mathrm{c}$, momentum resolution is dominated by the multiple-scattering effect.
- In order to realize the excellent resolution of $200 \mathrm{keV} / \mathrm{c}$, low-
 mass tracking region is essential.
- He:i- $\mathrm{C}_{4} \mathrm{H}_{10}(90: 10)$ gas mixture for CDC
- Al field wires with $126-\mu \mathrm{m}$ diameter
- Thin CFRP inner wall with 0.5 mm
\#Note: target volume is filled with He gas.
Al target consists of 17 discs with $100-\mathrm{mm}$ radius, 0.2 -mm thickness, \& 50-mm spacing.

Design of CDC

Feature of CDC Specification:

- Large inner diameter of $\sim 1 \mathrm{~m}$
- Most of DIO electrons ($<60 \mathrm{MeV} / \mathrm{c}$) do not reach CDC
- Cell structure
- Alternating all stereo layer: $64 \sim 75 \mathrm{mrad}$
- for good resolution in longitudinal direction

Electron drift lines

$Z=0$

	Table 7.1: Main parameters of the CDC.	
Inner wall	Length	1495.5 mm
	Radius	$496.0 \sim 496.5 \mathrm{~mm}$
	Thickness	0.5 mm
Outer wall	Length	1577.3 mm
	Radius	$835.0 \sim 840.0 \mathrm{~mm}$
	Thickness	5.0 mm
Number of sense layers		20 (including 2 guard layers)
Sense wire	Material	Au plated W
	Diameter	$25 \mu \mathrm{~m}$
	Number of wires	4986
	Tension	50 g
	Material	Al
	Diameter	$126 \mu \mathrm{~m}$
Field wire	Number of wires	14562
	Tension	80 g
Gas	Mixture	He:i- $\mathrm{C}_{4} \mathrm{H}_{10}(90: 10)$
	Volume	2084 L

Construction of CDC

Drilling holes on endplates with precision of $50 \mu \mathrm{~m}$

Outer structure was transported to a KEK assembly hall, and set on a wire stringing cradle.

Wire stringing and tension measurement for 19,548 wires were carried out in a half year.

Installation of inner wall made of $0.5-\mathrm{mm}$ thick CFRP

Completion of COMET CDC

Wire tension assurance

Nominal value	Material	Diameter	Tension	Sag
Sense	(Au-) W	$25 \mu \mathrm{~m}$	50 g	$\sim 50 \mu \mathrm{~m}$
Field	Al	$126 \mu \mathrm{~m}$	80 g	$\sim 120 \mu \mathrm{~m}$

$\mathrm{L}=1477 \sim 1593 \mathrm{~mm}$
Gravitational Sag: $\quad s=\frac{\rho L^{2}}{8 w g}$.

Criteria

- Sag for sense wire $<70 \mu \mathrm{~m}$
- Sag difference with neighbor wires $<100 \mu \mathrm{~m}$

After replacing bad wires, all the wires satisfy the criteria.

(b) Sag differences between a sense wire and surrounding field wires

Performance tests

- CDC performance tests using cosmic rays are being carried out with step-by-step upgrade of readout \& surrounding systems as well as analysis scheme.
- We have obtained spacial resolution of $\mathbf{1 7 0} \mu \mathrm{m}$ \& efficiency of $\mathbf{9 5 \%}$ so far.
- The performance tests will be continued in this year to precisely investigate whole region of the CDC.

(b) Zoom view

(a)

(b)

Summary

- The COMET experiment aims to search for the μ-e conversion. Preparation for the COMET Phase-I is intensively in progress.
- Cylindrical detector system is used for the Phase-I physics measurement.
- COMET CDC is designed to achieve $200-\mathrm{keV} / \mathrm{c}$ momentum resolution for $105-\mathrm{MeV} / \mathrm{c}$ signal electrons.
- Construction of CDC was successfully completed.
- Performance tests are ongoing and reasonable resolution \& efficiency are obtained so far.

Prospects

- Performance tests will be finished in this fiscal year.
- We plan to transport CDC from KEK to J-PARC and install to Detector Solenoid in 2019.
- Integrated cosmic-ray BG measurement will start from 2020.

Backup

Release of pre-tension © virestinging

Field Wire in the 2nd Measurement

Tension Bars @ Layer 9, 22 and 33

 which corresponds to the load by 20,000 wires in the end

36 (12 x 3 layers) tension bars installed the tension applied with spring ($3.07 \mathrm{kgf} / \mathrm{mm}$) $-39 \mathrm{~kg} /$ tension bar -> 1.4 ton in total 9 feedthrough holes occupied by 1 ba following the progress of the wire stringing, the tension decreased and/or bar removed

- Installation of the "Dial Gauge and Reference Bars"
to monitor the displacement between 2 endplates

dial-gauges are located at $10^{\circ}, 90^{\circ}, 180^{\circ}, 270$ reference bar is double-layered structure not to harm wires with the removal checked the displacement by tension bar (it was consistent with the calculation) monitoring the dial-gauges 3 times / day

High-level track trigger

(b) ROC curves with zoomed scale.

Figure 10.12: Conceptual drawing of COTTRI system

Software-level algorithm was already established.
We can reduce background hits into $1 / 20$ while retaining 99% of signals.

Spatial resolution vs distance of closest approach

Residual [mm]
$3.5 \sim 4.0 \mathrm{~mm}$

Residual [mm]
$6.0 \sim 6.5 \mathrm{~mm}$

Residual [mm]

Wire aging test

$\mathrm{He}: \mathrm{CC}_{4} \mathrm{H}_{10}(90: 10)$

- Accumulated charge is predicted to be $20 \mathrm{mC} / \mathrm{cm} /$ wire for Phase-I.
- Wire aging effect was studied up to $200 \mathrm{mC} / \mathrm{cm} /$ wire .
- Without water vapor addition, Malter effect (discharge \& large leak current) occurred around $20 \mathrm{mC} / \mathrm{cm}$.
- With water vapor of $1100 \sim 1300 \mathrm{ppm}$, we could avoid Malter effect and gain drop was obtained to be $1.7 \& 6 \%$ at $20 \& 200 \mathrm{mC} / \mathrm{cm}$, respectively. —> small enough

Gas system

Figure 7.19: Schematic view of the gas system for the $C D C$.

Electric field, drift velocity, etc

Garfield simulation with Magnetic field at $\mathrm{Z}=0$

Gas	$\mathrm{X}_{0}(\mathrm{~m})$	$W(\mathrm{eV})$	$\frac{d E^{M I P}}{d x}$	$(\mathrm{keV} / \mathrm{cm})$	$n_{T}^{M I P}\left(\mathrm{~cm}^{-1}\right)$	$n_{p}^{M I P}\left(\mathrm{~cm}^{-1}\right)$
He:i- $\mathrm{C}_{4} \mathrm{H}_{10}(85: 15)$	954	38	1.14	40	18	
$\mathrm{He}: \mathbf{i}-\mathrm{C}_{4} \mathrm{H}_{10}(90: 10)$	1310	39	0.88	29	14	
$\mathrm{He}: \mathrm{i}-\mathrm{C}_{4} \mathrm{H}_{10}(95: 5)$	2102	40		0.61	19	9
$\mathrm{He}: \mathrm{C}_{2} \mathrm{H}_{6}(50: 50)$	630	32	1.63	60	27	
$\mathrm{He}: \mathrm{CH}_{4}(80: 20)$	2166	39	1.47	17	11	
$\mathrm{He}: \mathrm{CH}_{4}(90: 10)$	3073	40	0.47	13	8	

Figure 7.4: Contours of electric field distribution calculated by Garfield for a cell of $1.6 \times 1.6 \mathrm{~cm}^{2}$ sense and field wires of $\phi 25$ and $\phi 126 \mu \mathrm{~m}$, and HV of 1800 V (top left), and the electric field distribution along the x-axis at $y=0$ (top right). Electric field at surface of field wires as a function of the field wire diameter for $H V$ of 1800 and 2300 V (bottom left), and that as a function of $H V$ for the field wire diameter of $126 \mu \mathrm{~m}$.

Prototype tests

- Prototype chambers are tested by using electron beams with 3 types of gas mixtures.
- He: $\mathrm{iC}_{4} \mathrm{H}_{10}(90: 10) \& \mathrm{He}: \mathrm{C}_{2} \mathrm{H}_{6}(50: 50)$ show good performance.

${ }^{\text {tand }}$ for $\mathrm{He-iC} \mathrm{C}$,

Gas parameters

	$\mathrm{He}: \mathrm{C}_{2} \mathrm{H}_{6}$ $(50: 50)$	$\mathrm{He}: \mathrm{C}_{4} \mathrm{H}_{10}$ $(90: 10)$	$\mathrm{He}: \mathrm{CH}_{4}$ $(80: 20)$
Rad. Len. [m]	630	1310	2166
e/ion pair [/cm]	60	29	17
drift velocity [cm/us]	~ 4.0	~ 2.4	~ 2.8
	(Belle/Belle-II)	(KLOE)	

Не. $\mathrm{CH}_{4}(80020)$

Garfeld ++ simulation and experiment of Christoph-Grab[7] P.Berrardini[8], Sharma-Sauli[g] and KLOE[IO]

Frontend readout electronics

Frontend readout board: RECBE
(= Readout Electronics for CDC for Belle-2 Experiment)
TDC: 960 MHz
ADC: 30 MHz sampling

Firmware design

All 128 RECBEs were already fabricated and QA was done by IHEP group.

- Radiation tolerance against gamma \& neutrons has been studied.
- Regulators \& SFP could survive up to 1.8 \& 1.1 kGy , respectively. —> acceptable
- FPGA URE rate $=4$ hour for 104 RECBEs.
\# Predicted dose is 0.1~0.2 kGy for Phase-1

Trigger \& DAQ system

FC7

I/F board for FCT \& RECBE

Tracking

- Pilot studies written in TDR have shown a good potential of CDC tracking which is sufficient for Phase-I sensitivity.
- $200 \mathrm{keV} / \mathrm{c}$ resolution with very little tail \& 18% acceptance.
- Multi-turn hits make things challenging..
- Momentum tail come form multi-turn events.
- Hits from other turns are too close to a track, providing a many local minima.
- Taking into account the multi-turn issue, full tracking packages from track finding to fitting are under development.
- Traditional ways (circle \& helix fitting), modern ways (deep learning, neural network), or other way around (topological method).

Simulation
Signal and $\mathrm{DIO}\left(\mathrm{BR}=3 \times 10^{-15}\right)$

Sensitivity \& Background

$$
B\left(\mu^{-}+\mathrm{Al} \rightarrow e^{-}+\mathrm{Al}\right)=\frac{1}{N_{\mu} \cdot f_{\mathrm{cap}} \cdot f_{\mathrm{gnd}} \cdot A_{\mu-e}}
$$

$$
\begin{aligned}
B\left(\mu^{-}+\mathrm{Al} \rightarrow e^{-}+\mathrm{Al}\right) & =3 \times 10^{-15} \quad \text { (as SES) or } \\
& <7 \times 10^{-15} \quad \text { (as } 90 \% \text { C.L. upper limit). }
\end{aligned}
$$

Table 12.8: Summary of the estimated background events for a single-event sensitivity of 3×10^{-15} in COMET Phase-I with a proton extinction factor of 3×10^{-11}

Type	Background	Estimated events
Physics	Muon decay in orbit	0.01
	Radiative muon capture	0.0019
	Neutron emission after muon capture	<0.001
	Charged particle emission after muon capture	<0.001
Prompt Beam	* Beam electrons	
	* Muon decay in flight	
	* Pion decay in flight	
	* Other beam particles	≤ 0.0038
	All (*) Combined	0.0028
	Radiative pion capture	$\sim 10^{-9}$
	Neutrons	~ 0
	Beam electrons	~ 0
	Muon decay in flight	~ 0
	Delayed Beam decay in flight	~ 0
	Radiative pion capture	0.0012
	Anti-proton induced backgrounds	<0.01
Others	Cosmic rays ${ }^{\dagger}$	0.032
Total		

\dagger This estimate is currently limited by computing resources.

[^0]: $\mathrm{E}_{\text {DIO }}$ can have a high-energy tail, which is in principle reach $\mathrm{E}_{\mu \mathrm{e}}$.

