Construction and performance tests of the COMET CDC

Manabu Moritsu (KEK, Japan) On behalf of the COMET Collaboration

39th International Conference on High Energy Physics (ICHEP2018) 7th July 2018, COEX, Seoul, Korea

µ-e conversion & COMET

The COMET experiment at J-PARC searches for the neutrinoless coherent transition of a muon to an electron in the field of an aluminum nucleus, which violates the lepton flavor conservation and has never been observed yet thus far.

- The conversion rate is predicted to be enhanced in new physics models beyond the Standard Model, while the process is extremely suppressed in the Standard Model.
- The goal of the COMET is to explore the μ -e conversion with single event sensitivity of 3×10^{-15} and 3×10^{-17} in Phase-I and Phase-II, respectively, which is 100 and 10,000 times better than the current limit.
- COMET Phase-I:
 - J-PARC 8GeV-3.2 kW proton beam \rightarrow Capture Solenoid \rightarrow Transport Solenoid (90-deg bend) —> Cylindrical Detector System

 $\mu^- N \rightarrow e^- N$

Signal & background

- The signal of the μ -e conversion is ~105 MeV mono-energetic electrons, $E_{\mu e} = m_{\mu} - B_{\mu} - E_{rec} = 104.97$ MeV for Al
- while the backgrounds are
 - 1. Decay-in-orbit (DIO) electrons
 - 2. Prompt beam-related BG
 - **3**. Cosmic-ray induced BG.

Signal & background

- The signal of the μ -e conversion is ~105 MeV mono-energetic electrons, $E_{\mu e} = m_{\mu} - B_{\mu} - E_{rec} = 104.97$ MeV for Al
- while the backgrounds are
 - Decay-in-orbit (DIO) electrons

- Prompt beam-related BG 2.
- Cosmic-ray induced BG. 3.

Muon Decay in Orbit (DIO)

 E_{DIO} can have a high-energy tail, which is in principle reach $E_{\mu e}$.

In order to distinguish the signal from the background, good momentum resolution of 200 keV/c is required.

COMET CDC

- In the COMET Phase-I, the converted electrons, which possess monochromatic momentum of 105 MeV/c, are detected with a cylindrical drift chamber (CDC) in a solenoidal magnetic field of **1 T**.
- Trigger signals are issued by a combination of scintillation & **Cherenkov hodoscopes** placed at inner side both upstream & downstream of CDC.
- In this low momentum region around 105 MeV/c, momentum resolution is dominated by the multiple-scattering effect.
- In order to realize the excellent resolution of 200 keV/c, lowmass tracking region is essential.
 - He:i- C_4H_{10} (90:10) gas mixture for CDC
 - Al field wires with $126 \mu m$ diameter
 - Thin CFRP inner wall with **0.5** mm

#Note: target volume is filled with He gas.

Al target consists of 17 discs with 100-mm radius, 0.2-mm thickness, & 50-mm spacing.

Design of CDC

Feature of CDC Specification:

► Large inner diameter of ~1 m

- Most of DIO electrons (< 60 MeV/c) do not reach CDC
- Cell structure
 - Alternating all stereo layer: 64~75 mrad
 - for good resolution in longitudinal direction

Table 7.1: Main parameters of the CDC.				
Inner wall	Length	$1495.5 \mathrm{~mm}$		
	Radius	$496.0 \sim 496.5 \text{ mm}$		
	Thickness	$0.5 \mathrm{mm}$		
Outer wall	Length	1577.3 mm		
	Radius	$835.0 \sim 840.0 \text{ mm}$		
	Thickness	$5.0 \mathrm{mm}$		
Number of sense layers		20 (including 2 guard layers)		
Sense wire	Material	Au plated W		
	Diameter	$25~\mu{ m m}$		
	Number of wires	4986		
	Tension	$50~{ m g}$		
Field wire	Material	Al		
	Diameter	$126~\mu{ m m}$		
	Number of wires	14562		
	Tension	$80 \mathrm{~g}$		
Gas	Mixture	He:i-C ₄ H ₁₀ (90:10)		
	Volume	2084 L		

6

Construction of CDC

Drilling holes on endplates with precision of 50 μ m

Outer structure was transported to a KEK assembly hall, and set on a wire stringing cradle.

Wire stringing and tension measurement for 19,548 wires were carried out in a half year.

Installation of inner wall made of 0.5-mm thick CFRP

Completion of COMET CDC

Wire tension assurance

8

-100 µm

Performance tests

- CDC performance tests using cosmic rays are being carried out with step-by-step upgrade of readout & surrounding systems as well as analysis scheme.
- We have obtained spacial resolution of $170 \,\mu m$ & efficiency of 95%so far.
- The performance tests will be contin investigate whole region of the CDC

Summary

- Phase-I is intensively in progress.
- Cylindrical detector system is used for the Phase-I physics measurement.
- electrons.
- Construction of CDC was successfully completed.

Prospects

- Performance tests will be finished in this fiscal year.
- We plan to transport CDC from KEK to J-PARC and install to Detector Solenoid in 2019.
- Integrated cosmic-ray BG measurement will start from 2020.

The COMET experiment aims to search for the μ -e conversion. Preparation for the COMET

COMET CDC is designed to achieve 200-keV/c momentum resolution for 105-MeV/c signal

Performance tests are ongoing and reasonable resolution & efficiency are obtained so far.

• • • •

11

• • • • • • • • • •

Release of pre-tension

Installation of the "Tension Bar" to apply the load (~ 1.4 ton) which corresponds to the load by 20,000 wires in the end

- 36 (12 x 3 layers) tension bars installed the tension applied with spring (3.07 kgf/mm) ~39 kg/tension bar -> 1.4 ton in total 9 feedthrough holes occupied by 1 bar
- following the progress of the wire stringing, the tension decreased and/or bar removed

@ wire stringing

Installation of the "Dial Gauge and Reference Bars" to monitor the displacement between 2 endplates

- dial-gauges are located at 10°, 90°, 180°, 270°
- reference bar is double-layered structure not to harm wires with the removal
- checked the displacement by tension bar (it was consistent with the calculation)
- monitoring the dial-gauges 3 times / day

_			
	7	2	
	Ŝ	Ņ	
5	-	۰.	
•	-		
•	C	5	
	2	2	
	ă	3	
	C)	
_		Ì	
ī			
•			
	π	5	
	Ċ	١	
	-	•	
I	-		

High-level track trigger

Software-level algorithm was already established. We can reduce background hits into 1/20 while retaining 99% of signals.

Sig. Hit Retention Efficiency 85% 95% 100% Track, Local and Neighbour Features

COTTRI FE (for CDC) DAQ/Control/Monitoring 罚 DisplayPort **FPGA** SFP+ (Artix-7, CDC Hit Info Xilinx) DisplayPort COTTRI MB from RECBE DisplayPort for Data Digital ×5-10 CLK rocessing outputs distribution Digital ×4ch for test FPGA inputs splavPo SFP+ Kintex-7 Trigg ×2ch for tes Xilinx) to COT **FRI ME** SFP+ **COTTRI FE** for Data DisplayPort **Trigger Info** Processin to FC7 (for CTH) Analog inputs Digital I/O ×20ch for **FPGA** ×16ch 100MSPS (Artix-7, SFP+ Ŵ Xilinx) ADC CLK for Data 🖥 DisplayPort distribution Processing Digital inputs ×2ch for test Digital outputs 5 ×4ch for

PC for

Figure 10.12: Conceptual drawing of COTTRI system

esidual(DCA7.5~8mn	m) for iteration3	
--------------------	-------------------	--

0	χ² / ndf	607.3 / 47	/bin	χ² / ndf	2308 / 4
	Constant	3887±16.1	Seoo Seoo	Constant	1744±9

Wire aging test

- Accumulated charge is predicted to be 20 mC/cm/wire for Phase-I.
- ▶ Wire aging effect was studied up to 200 mC/cm/wire.
- Without water vapor addition, Malter effect (discharge & large leak current) occurred around 20 mC/cm. ▶ With water vapor of 1100~1300 ppm, we could avoid Malter effect and gain drop was obtained to be 1.7 & 6%
- at 20 & 200 mC/cm, respectively. —> small enough

Gas system

Figure 7.19: Schematic view of the gas system for the CDC.

16

Electric field, drift velocity, etc

Figure 7.4: Contours of electric field distribution calculated by Garfield for a cell of 1.6×1.6 cm², sense and field wires of $\phi 25$ and $\phi 126 \mu m$, and HV of 1800 V (top left), and the electric field distribution along the x-axis at y = 0 (top right). Electric field at surface of field wires as a function of the field wire diameter for HV of 1800 and 2300 V (bottom left), and that as a function of HV for the field wire diameter of 126 μ m.

-0.7 -0.6 -0.5 -0.2 -0.1 -0.2 -0.1 -0.2 -0.1 -0.2 -0.5 -0.6

Gas	X_0 (m)	W (eV)	$\frac{dE^{MIP}}{dx} \text{ (keV/cm)}$	$n_T^{MIP} \ (\mathrm{cm}^{-1})$	n_p^{MIP} (cn
He:i- C_4H_{10} (85:15)	954	38	1.14	40	18
He:i- C_4H_{10} (90:10)	1310	39	0.88	29	14
He:i- C_4H_{10} (95:5)	2102	40	0.61	19	9
$He:C_2H_6$ (50:50)	630	32	1.63	60	27
He:CH ₄ $(80:20)$	2166	39	1.47	17	11
He:CH ₄ (90:10)	3073	40	0.47	13	8

×-Distance from the Wi

Prototype tests

- ▶ Prototype chambers are tested by using electron beams with 3 types of gas mixtures.
- He:iC₄H₁₀ (90:10) & He:C₂H₆ (50:50) show good performance.

Figure 8: The drift velocity versus the electric field for $He-iC_4H_{10}(90/10)$ by comparing with Garfield++ simulation and experiment of Christoph-Grab[7], P.Bernardini[8], Sharma-Sauli[9] and KLOE[10]

Figure 9: Spatial resolution as a function of drift distance distance for $He-iC_4H_{10}(90/10)$ at 1800 V. The line shows fitted curve.

Figure 11: Relation between gas gain and high voltage for three types of gas mixture. Squres stand for $He-iC_4H_{10}(90/10)$. Full circles stand for $He-C_2H_6(50/50)$. Triangles stand for $He-CH_4(80/20).$

Gas parameters

	He:C ₂ H ₆ (50:50)	He:iC ₄ H ₁₀ (90:10)	He:CH ₄ (80:20)
Rad. Len. [m]	630	1310	2166
e/ion pair [/cm]	60	29	17
drift velocity [cm/us]	~4.0	~2.4	~2.8

(KLOE) (Belle/Belle-II)

Figure 10: Cell efficiency (full circles) and spatial resolution (open circles) as a function of the applied voltage for 3 different types of gas

Frontend readout board: **RECBE**

(= Readout Electronics for CDC for Belle-2 Experiment)

TDC: 960 MHz ADC: 30 MHz sampling

Radiation tolerance against gamma & neutrons has been studied.

- Regulators & SFP could survive up to 1.8 & 1.1 kGy, respectively. —> acceptable
- FPGA URE rate = 4/hour for 104 RECBEs.

Firmware design

All 128 RECBEs were already fabricated and QA was done by IHEP group.

Predicted dose is 0.1~0.2 kGy for Phase-1

Trigger & DAQ system

FC7

I/F board for FCT & RECBE

.

Tracking

- Pilot studies written in TDR have shown a good potential of CDC tracking which is sufficient for Phase-I sensitivity.
 - 200 keV/c resolution with very little tail & 18% acceptance.
- Multi-turn hits make things challenging...
 - Momentum tail come form multi-turn events.
 - Hits from other turns are too close to a track, providing a many local minima.
- Taking into account the multi-turn issue, full tracking packages from track finding to fitting are under development.
 - Traditional ways (circle & helix fitting), modern ways (deep learning, neural network), or other way around (topological method).

Sensitivity & Background

$$B(\mu^- + \mathrm{Al} \to e^- + \mathrm{Al}) = \frac{1}{N_{\mu} \cdot f_{\mathrm{cap}} \cdot f_{\mathrm{gnd}} \cdot A_{\mu-e}},$$

 $B(\mu^{-} + \text{Al} \to e^{-} + \text{Al}) = 3 \times 10^{-15}$ (as SES) or $< 7 \times 10^{-15}$ (as 90 % C.L. upper limit).

Table 12.8: Summary of the estimated background events for a single-event sensitivity of 3×10^{-15} in COMET Phase-I with a proton extinction factor of 3×10^{-11} .

Background	Estimated even
Muon decay in orbit	0.
Radiative muon capture	0.00
Neutron emission after muon capture	< 0.0
Charged particle emission after muon capture	< 0.0
* Beam electrons	
* Muon decay in flight	
* Pion decay in flight	
* Other beam particles	
All $(*)$ Combined	≤ 0.00
Radiative pion capture	0.00
Neutrons	~ 10
Beam electrons	\sim
Muon decay in flight	\sim
Pion decay in flight	\sim
Radiative pion capture	\sim
Anti-proton induced backgrounds	0.00
Cosmic rays ^{\dagger}	< 0.
	0.0
_	Muon decay in orbit Radiative muon capture Neutron emission after muon capture Charged particle emission after muon capture * Beam electrons * Muon decay in flight * Pion decay in flight * Other beam particles All (*) Combined Radiative pion capture Neutrons Beam electrons Muon decay in flight Pion decay in flight Radiative pion capture Anti-proton induced backgrounds

I insestimate is currently innited by computing resources.

