

Large Area SiPM Readout and Signal Processing for nEXO

J. Echevers,

On behalf of the nEXO Collaboration University of Illinois at Urbana-Champaign

XXXIX International Conference on High Energy Physics 2018, COEX, Seoul

Introduction to Neutrinoless Double-Beta Decay

Search for *neutrinoless double-beta decay* $(0\nu\beta\beta, T_{1/2} > 10^{26} \text{ yr})$ is an active field of research with important implications for nuclear and particle physics:

- Unlike standard $2\nu\beta\beta$, no neutrinos are emitted
- If it exists, it would imply **BSM physics**: neutrinos

 would have to be their own
 anti-particles (Majorana
 fermions), and lepton
 number would not be
 conserved

The nEXO Experiment

- A proposed 5-tonne liquid xenon (enriched 136 Xe) time projection chamber (TPC) to search for $0\nu\beta\beta$
- Allows for 3-D tracking of events
- Two primary signals from candidate events: scintillation (VUV photons, z-coordinate) and ionization (xy-coordinates)
- Scintillation will be collected with silicon photomultipliers (**SiPMs**) and ionization with charge collection tiles
- **Resolution** of energy deposited by candidate events is determined by light collection efficiency and charge collection efficiency

Light Collection

- Historically, photomultiplier tubes (PMTs) have been preferred as the choice light-collection device in similar experiments
- Radioactivity of PMTs is too high for nEXO requirements
- SiPMs are substantially less radioactive than PMTs
- Large area avalanche photodiodes (LAAPDs) were used in the previous generation experiment, will be replaced by SiPMs in nEXO
- In LAAPDs, the resolution is limited by electronics noise

Photo-detection efficiency

The efficiency of the low field (LF) FBK* devices tested exceeds the minimum requirements of nEXO and the optimal set point is near the beginning of the plateau. The colored bands represent the systematic uncertainties of the measurements.

SiPM Test Setup (U of Illinois, Indiana U.)

- We tested a set of 6 FBK LF SiPM's (6 cm^2 total area), in two configurations:
 - A. All in *parallel*. All get the same V_{bias}
 - B. In a configuration of 3 in parallel, *in series* with another 3 in parallel. Equality of V_{bias} is in this case forced by a resistor (thin film 42.9 M Ω) in parallel with each group of 3.
- Testing was done under very stable cryogenic conditions: 165 +/-0.1 K and V_{bias} +/- 0.01 V
- Five of the SiPMs were covered, one exposed to a blue LED (same one in both configurations)

Cryo-testing chamber

6x1 cm² FBK SiPM mounted on a ceramic carrier board, 2.5 mW/channel

SiPM readout board, designed by ORNL (Oak Ridge National Laboratory)

Readout circuit diagram

Single pulse waveform

Unfiltered pulse

After 3 MHz bandwidth filter

Unfiltered Waveforms

3 MHz bandwidth filter

Resolution of *pulse height spectrum* (PHS) improves significantly in series configuration

Series

Parallel

*Note: $V_{over}^{series} = 2V_{over}^{parallel}$

Resolution can be furthered improved with filtering

Parallel

Results

Series

V _{over} (V) -single SiPM	Unfiltered Resolution (SPE)	Filtered Resolution (SPE)
5	0.17	0.12
4.5	0.2	0.13
4	0.2	0.14
3.5	0.19	0.15

Parallel

V _{over} (V) -single SiPM	Unfiltered Resolution (SPE)	Filtered Resolution (SPE)
5	0.22	0.19
4.5	0.24	0.21
4	0.26	0.23
3.5	0.29	0.25

Summary and conclusions

- $0\nu\beta\beta$ is an excellent decay mode to search for physics beyond the Standard Model
- With nEXO we will be able to reach a $0\nu\beta\beta$ search sensitivity close to $\tau_{1/2} = 10^{28}$ years
- Energy resolution is determined largely by photo-detection efficiency
- The nEXO collaboration has undertaken a R&D campaign to test and characterize *VUV-sensitive SiPMs*
- We have developed a baseline readout design for *large area* SiPMs
- Single photoelectron resolution (important for energy resolution) in FBK SiPMs is best in series connection, as expected from theoretical predictions, however, radioactivity considerations (from added resistors) might be a concern
- Next step is to fully develop an ASIC design for reading out the SiPMs

Acknowledgements

- Research presented here was partially supported by the US Department of Energy (DOE) Office Nuclear Physics R&D program
- Travel for this conference was made possible by the Alfred P. Sloan Foundation
- We thank our nEXO Collaborators for discussions in the development of this work

Extra slide

nEXO papers, describing the detector, the experiment's sensitivity and some results from the R&D

- "nEXOpCDR" arXiv:1805.11142 [physics.ins-det], May 2018
- "Sensitivity and Discovery Potential of nEXO to 0νββ decay" Phys. Rev. C 97, 065503 (2018)
- "Characterization of an Ionization Readout Tile for nEXO" J.Inst. 13 P01006 (2018)
- "Characterization of Silicon Photomultipliers for nEXO", IEEE Trans. NS 62, 1825 (2015)