

Upgrade Project of the T2K Near Detector

Konosuke Iwamoto (University of Tokyo) On behalf of the ND280 Upgrade Working Group

ICHEP 2018, Seoul

1

T2K Experiment

T2K to T2K-II

arXiv:1609.04111

Protons [10²¹PO]

ntegrated

JFY

Delivered Protons /

T2K rejects CP conservation at 2σ CL in both mass hierarchies

- Beam power upgrade (485 kW→1.3 MW)
- Plan to accumulate 20×10^{21} POT by 2026
- Reaches $> 3\sigma$ sensitivity to CP violation in lepton sector (for ~40% of the δ_{CP} values with known mass hierarchy

arXiv:1609.04111

Impact of Systematic Uncertainties

Improved understandings of the systematic uncertainties allow to achieve the $> 3\sigma$ sensitivity with less POT:

- Flux uncertainty
- Detector uncertainty
- Neutrino cross-section uncertainty

Goal to reduce the systematic uncertainty from 6% to 74%

→ND280 Upgrade

T2K Off-Axis Near Detector Complex: ND280

- Measures particles produced by neutrino interactions prior to oscillations
 - 3 Time Projection Chambers (TPCs)
 - 2 Fine-Grained Detectors (FGD1, FGD2 w/ water target)
 - Planes of plastic scintillator bars along horizontal and vertical directions
 - π^0 Detector (P0D)
 - Electromagnetic Calorimeter (ECAL)
 - Side Muon Range Detector (SMRD)
 - Magnetized by 0.2 T UA1 Magnet

ND280 Upgrade

- Keep 2 FGDs, 3 TPCs, ECals
- Implement new upstream trackers:
 - 2 High-Angle TPCs (HA-TPCs)
 - 1 fine-grained scintillator target (SuperFGD)
 - Time-of-Flight (ToF) counters around the new trackers
 - Provides timing information for track reconstruction

	Current (FGDs)	Upgrade (FGDs + SuperFGD)
Target mass (tons)	2.2	4.3

High-Angle TPC

• Resistive Micromegas:

- Pads covered by resistive foil
- Developed by the ILC-TPC collaboration
- Field Cage Design:
 - Thin field cage wall (~3 cm)
 - Multi-layer structure to minimize the material budget (~3% X₀)
 - Designs with carbon fiber and aramid fiber based layers in progress

Parameters	Values/TPC	
Dimensions	$1.8 \times 0.6 \times 2.0 \text{ m}^3$	
Drift distance	90 cm	
Gas ratio (Ar, CF_4 , iC_4H_{10})	95%, 3%, 2%	
Pad dimensions	$11 \times 11 \text{ mm}^2$	
Micromegas dimensions	$340 \times 410 \text{ mm}^3$	
# Micromegas	16	
# Channels	3.2×10^{4}	

Time-of-Flight Counter

- ToF planes placed around the new trackers
- Provides timing information for track reconstruction
- Improved particle identification (p/e⁺, electrons/muons)
- Out-of-fiducial-volume event rejection
- R&D with a cast plastic scintillator design
 - 8 photo-sensors ($6 \times 6 \text{ mm}^2$)
 - Timing resolution is < 100 ps
 - R&D at University of Geneva (for SHiP)

SuperFGD

Х

Parameter	Cube edge: 1 cm	
$\# ext{ of cubes}$	2,160,000	
# of channels	$58,\!800$	
Total fiber length	$65{ m km}$	

- 1.8 x 0.6 x 2.0 m³ volume
- Consists of $1 \times 1 \times 1 \text{ cm}^3$ plastic scintillator cubes with the reflector obtained by chemical etching
- WLS fibers along each side of the cubes, allowing the light yield measurement from three views by the MPPCs

SuperFGD Cube Production

- Prototype cubes produced by extrusion method
 - Uncertainty of the cube dimension was ~75 μ m
- ~50 μ m thickness reflector obtained by chemical etching by Uniplast (Russia)

- Injection molding method established by INR RAS (Russia)
 - Uncertainty of the cube dimension reduced to ~35 μ m with reflectors

SuperFGD Prototype Beam Tests

- Two beam tests completed, one ongoing
- June 27 July 11, 2018 @ CERN T9
 - 8 × 24 × 48 cm³ prototype, CITIROC readout (Baby MIND electronics), magnetized by the MNP17 magnet platforms (0.2-1T)
 - 1,728 MPPC channels
 - Upstream MDX dipole magnet (0.5T) to prepare photon beam

Simulation Studies

- Wide angle acceptance
- GEANT4 simulation of current and upgrade ND280 with T2K ν_{μ} flux prediction (1×10^{21} POT)
- v_{μ} CC event selection using tracks reconstructed in TPCs
- Selection efficiency of backward going and wide-angle events increased by ~40%
- Reduces systematic uncertainties by 20-40 %
 than the current ND280

High granularity

Reconstruction efficiency improvement in high-angle and low momentum tracks

• e/γ separation for v_e selection with the track light yield difference (1 and 2 MIPs)

Conclusions

- ND280 Upgrade for T2K-II
 - Wide angle acceptance and low momentum measurement by HA-TPCs, SuperFGD, and ToF counters
 - R&D and simulation studies in progress
 - Proposal submitted on Jan 2018 (SPSC@CERN & PAC@J-PARC)
- Plan for the ND280 Upgrade:
 - June August 2018: Prototype SuperFGD and HA-TPC beam test @ CERN
 - End of 2018: Technical Design Report
 - 2019-2020: Production at INR, integration at CERN, system test
 - 2021: Installation and commissioning in Japan
- Open workshops every ~2 months
 - So far 8 open workshops were held since November 2016
- The 9th open workshop at CERN on July 25 26:
 - <u>https://indico.cern.ch/event/724624/</u>
 - New members are always welcome!!

Thank you very much!!

Back-Up Slides

Latest Result of T2K (NEUTRINO 2018)

T2K rejects CP conservation at 2σ CL in both mass hierarchies

T2K Data Accumulation Summary

- Neutrino statistics has doubled during 2016-2017 run
- Anti-neutrino statistics has doubled during the latest run

Goals of ND280 Upgrade (1)

Figure 2: Cross-sectional view of an FGD, showing the locations of the scintillator modules, photosensors, support straps, electronics minicrates, and dark box.

arXiv:1204.3666

4π Acceptance

- Current ND280 has strong forward track acceptance yet low efficiency to the vertical and backward tracks
- Detector with larger phase space to apply constraint on the cross section models

Goals of ND280 Upgrade (2)

- Low momentum (< 200 MeV/c) particle measurement
 - 2p2h models

 $E_{True} = 600 \text{ MeV}$

Total CCQE+RPA 2p2h ∆-enhanced 2p2h not-∆

reconstructed energy [GeV]

2

1.5

60

20

0.5

σ / Z [fb/GeV]

- Energy reconstruction bias
- Electron-photon separation
 - ~23% of the ND events that are selected as v_e are misidentified photons from $v_\mu \text{ NC1}\pi^0$
- Detector with higher granularity to be sensitive to low momentum

Interaction

Mode

CCRES

SuperFGD Assembly

- Assembly method developed by INR RAS
- 1.3 mm ϕ fishing lines through the cubes to assemble, replaced with 1.0 mm ϕ WLS fiber line by line
- Feasibility proved with 9,216-cube prototype ($8 \times 24 \times 48 \text{ cm}^3$)
- Other methods for an actual detector design under investigation

SuperFGD Prototype Beam Tests

- October 18 November 1, 2017 @ CERN T10
 - $5 \times 5 \times 5$ cm³ prototype, digitizer readout
 - Light yield, cross-talk, timing resolution
- June 1-3, 2018 @ Tohoku University
 - $4 \times 4 \times 6 \text{ cm}^3$ prototype, EASIROC readout
 - ~500 MeV/c positron beam
 - Position dependence, inner cube uniformity of light yield, test of different cube design

SuperFGD Prototype Beam Test @ CERN T9

- Using Baby MIND electronics with signal amplifications in the FE board (CITIROC)
- Uses micro-coaxial cables to provide connections between ceramic type MPPCs and FE boards
- Mechanical structure made in UniGe

MPPCs for the Beam Test @ CERN T9

SuperFGD PCB-Box Integration

- Goal to minimize the space and material budget
- Surface mount type MPPC
 - <u>https://www.hamamatsu.com/resources/pdf/ssd/s13360_series_kapd1052e.pdf</u>
- Preliminary design and R&D in progress

PCB & other components for the tests

- Plastic connectors inserted holes in the box
- The top layer could be just one CF or aluminum layer, i.e. not a CF-AIREX-CF like bottom —> to be studied with FEA
- Design very compact: thickness depends on the type of connector, but aim to <1 cm (from box to PCB)
- FOAM layer to avoid stresses to the fiber and compress the cubes
- Currently working on the tuning of the parameters

Intrinsic v_e Component in the Flux

Phys. Rev. D. 89, 092003 (2014)

- Expected scaling factor obtained with 6.0e20 POT:

 $R(\nu_e) = 1.01 \pm 0.06(\text{stat}) \pm 0.06(\text{flux} \oplus x. \text{sec})$

 $\pm 0.05(\det \oplus FSI)$

 $= 1.01 \pm 0.10,$

- $E_{\nu} < 1.2$ GeV dominated by muon decay:

 $R(\nu_e(\mu)) = 0.68 \pm 0.24(\text{stat}) \pm 0.11(\text{flux} \oplus x. \text{sec})$ $\pm 0.14(\text{det} \oplus \text{FSI})$

 $= 0.68 \pm 0.30$

(4)

CC v_e Inclusive Cross Section on Carbon

Phys. Rev. Lett. 113, 241803

- Total flux averaged cross section obtained with 6.0e20 POT:

 $\langle \sigma \rangle_{\phi} = 1.11 \pm 0.10 (\text{stat}) \pm 0.18 (\text{syst}) \times 10^{-38} \text{cm}^2/\text{nucleon}$

- Dominant components of systematic uncertainties:

e/γ Separation in ND280 Upgrade Target

- Goal to distinguish e/γ events that are single-track, electron-like, low momentum (200 < p < 600 MeV/c)
- Distinction between 1 (e^-) and 2($\gamma \rightarrow e^-e^+$) MIP events using the MPPC light yield from the tracks
 - Considering the light yield before and after the e^-e^+ tracks split into different scintillator segments

Ζ

V

e/ γ Separation using Light Yield

- Preliminary algorithm to separate e/γ events using the total light yield for each view (YZ, XZ, XY)
 - 1. Locates the single electron track and the starting point using truth information
 - "Perfect pattern recognition"
 - 2. Split the track into two segments where the ratio between the mean values of the total p.e. is the largest
 - Ignores the first and last MPPC hits to avoid short path length

10

e Sample

SuperFGD: v_e MC and γ 4 π p-gun Comparison

77% efficiency to accept v_e CC 39% to mis-ID γ p-gun sample (19% if 2-trk-like count as rejected)

ND280 Upgrade v_{μ} Selection CERN-SPSC-2018-001 ; SPSC-P-357

Comparison of predicted event rate of selected events $(1 \times 10^{21} \text{ POT})$ between ND280 current and upgrade:

 $[\]nu_{\mu}$ CC

Selection	Current-like	Upgrade-like
$ u_{\mu}$	93 401	194 654
$(\nu \text{ beam})$	55,401	154,004
$ar{ u}_{\mu}$	33,437	63,687
$(\bar{\boldsymbol{\nu}} \text{ beam})$		
$ u_{\mu}$	17,998	33,773
$(\bar{\nu} \text{ beam})$		

ND280 Upgrade Sensitivity

ND data fit tool adapted to ND280 Upgrade to evaluate how much the systematic uncertainties are reduced (8×10^{21} POT) :

Parameter	Current ND280 (%)	Upgrade ND280 (%)
SK flux normalisation	3.1	2.4
$(0.6 < E_{\nu} < 0.7 \text{ GeV})$		
${ m MA}_{ m QE}~({ m GeV}/{ m c}^2)$	2.6	1.8
ν_{μ} 2p2h normalisation	9.5	5.9
2p2h shape on Carbon	15.6	9.4
$MA_{RES}~(GeV/c^2)$	1.8	1.2
Final State Interaction (π absorption)	6.5	3.4

On average the systematic uncertainties are reduced by about 30%