

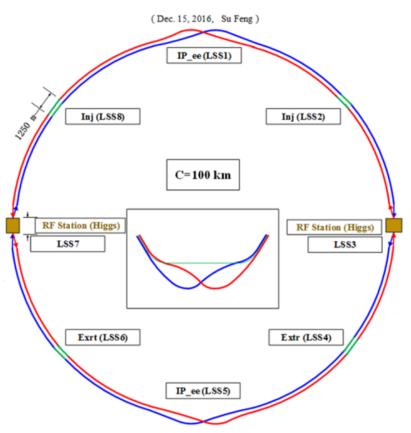
Development of the Silicon Tracker for CEPC

Yunpeng Lu

On behalf of the study group

July 6, 2018 COEX, SEOUL

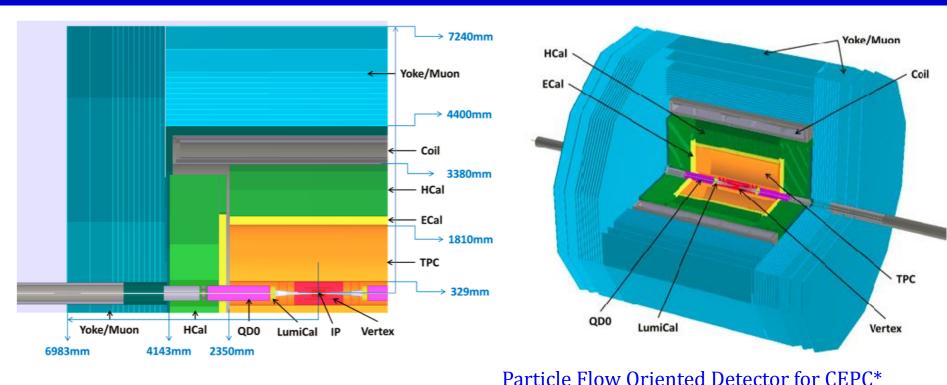
XXXIX INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS


Outline:

- Baseline design
- Pixel sensor specifications
- R&D activities
- Future plan
- Summary

CEPC and Its Beam Timing

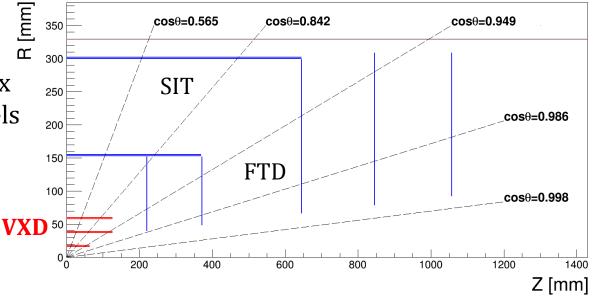
- Circular Electron-Positron Collider (90, 160, 250 GeV)
 - Higgs factory (10⁶ Higgs)
 - Z & W factory (10¹⁰ Z⁰)
- Baseline design in CDR(to be released in 2018)
- Bunch spacing 680 ns (25 ns @ Z-pole)
 - Continuous colliding mode
 - Power pulsing not applicable
 - New constraint for the detector development:


Very low power consumption

Fully Partial Double Ring - 100Km*

* CEPC Accelerator CDR and R&D towards TDR, J. Gao, Accelerator session on Sat. morning

Detector Concept


- Two detector concepts
- One is ILD-like, which is optimized for
 - 3 Tesla magnet
 - L* = 2.2 m

* Physics performance of the Particle Flow Oriented detector at the CEPC, Manqi Ruan, Poster

Baseline Silicon Tracker Layout

<u>VXD</u>:

- Same layout as the ILD vertex
- 3 layers of double-sided pixels
- σ_{SP} =2.8µm, inner most layer
- Polar angle $\theta \sim 15$ degrees

- Silicon Internal Tracker (SIT) 2 inner layers Si strip detectors
- Forward Tracking Detector (FTD) 5 disks (2 with pixels and 3 with Si strip sensor) on each side, comparing 7 disks on ILD, due to smaller L*
- Silicon External Tracker (SET) 1 outer layer Si strip detector
- End-cap Tracking Detector (ETD) 1 end-cap Si strip detector on each side

Silicon Tracker Requirements

B=3T

momentum resolution

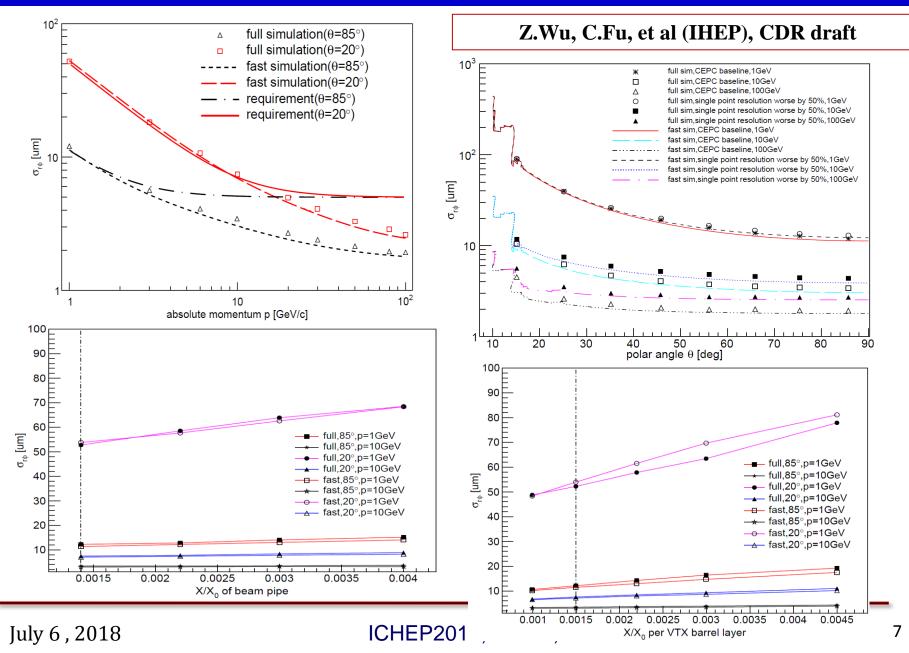
impact parameter resolution

Efficient tagging of heavy quarks

$$\sigma_{1/p_T} = 2 \times 10^{-5} \oplus 1 \times 10^{-3} / (p_T \sin \theta)$$
$$\sigma_{r\phi} = 5 \mu m \oplus \frac{10}{p (GeV) \sin^{3/2} \theta} \mu m$$

Vertex specifications:

- σ_{SP} near the IP: $\leq 3 \mu m$
- material budget: ≤ 0.15%X ₀/layer
- pixel occupancy: ≤ 1 %
- radiation tolerance: Ionising dose ≤1 Mrad/ year


Non-ionising fluences $\leq 10^{12} n_{eq} / (cm^2 year)$

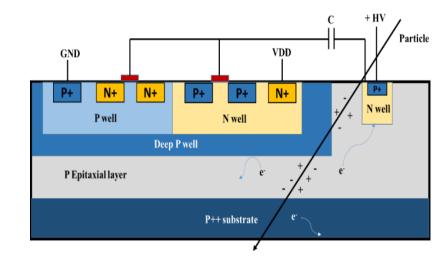
• first layer located at a radius: ~1.6 cm

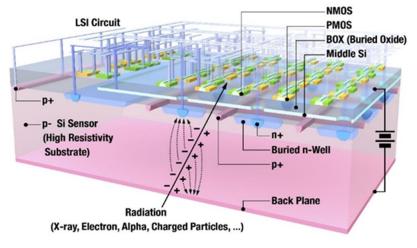
Tracking specifications:

- σ_{SP} : $\leq 7 \, \mu m \rightarrow$ small pitch (50 μm)
- material budget: ≤ 0.65%X ₀/layer

Performance Studies – IP Resolution

Pixel Sensor Specifications

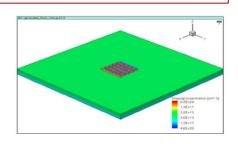

• Current R&D focused on the pixel sensor for the Vertex


- To achieve S.P. resolution
 - Digital pixel with in-pixel discriminator ~ 16um
 - Analog pixel ~ 20um (heavily rely on power pulsing as in the ILC)
- To lower the material budget
 - Sensor thickness ~ 50um
 - Heat load < 50 mW/cm² constrained by air cooling
- To tackle beam-related background
 - 20us/frame?
 - 1Mrad/year & 2×10¹²neq/ (cm²·year)?

Physics driven requirements	Running constraints	Sensor specifications
σ _{s.p.} 2.8um		Small pixel 16um
Material budget 0.15% X ₀ /layer		> Thinning 50um
	>Air cooling	> low power 50mW/cm ²
r of Inner most layer ^{16mm}	>beam-related background	····· ⇒ fast readout 20us?
	>radiation damage	$\begin{array}{l} \scriptstyle \scriptstyle$

R&D Activities

- Two monolithic pixel technologies
- CMOS pixel sensor (CPS)
 - TowerJazz CIS 0.18 μm process
 - Quadruple well process
 - Thick (~20 μm) epitaxial layer
 - with high resistivity ($\geq 1 k\Omega \bullet cm$)
- SOI pixel sensor
 - LAPIS 0.2 μm process
 - High resistive substrate ($\geq 1 \text{ k}\Omega \cdot \text{cm}$)
 - Double SOI layers available
 - Thinning and backside process



© Rey. Hori

July 6 , 2018

R&D Activities - CMOS Pixel Sensor

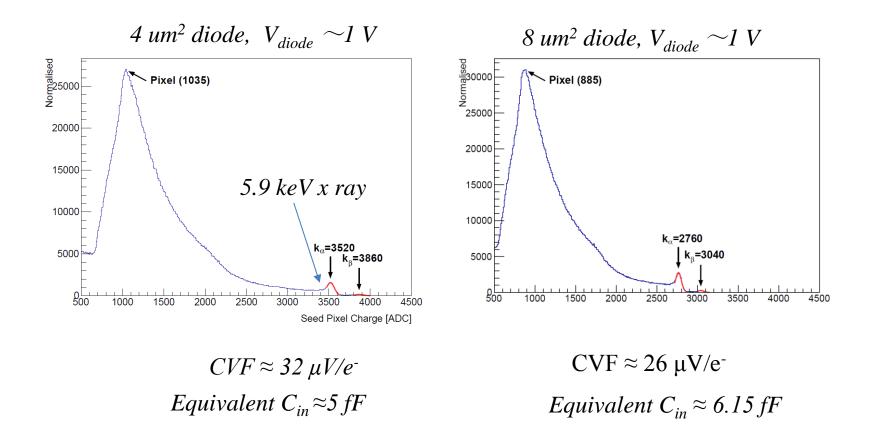
- Sensor design & TCAD simulation
 - Different sensor diode geometries, epitaxial-layer properties and radiation damage

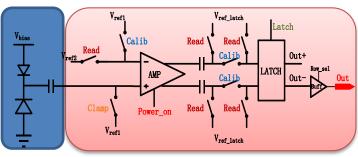

• JadePix1, first submission in Nov. 2015

- Exploratory prototype, analog pixel, rolling shutter readout mode
- Sensor optimization and radiation tolerance study
- sensing node AC-coupled to increase biased voltage

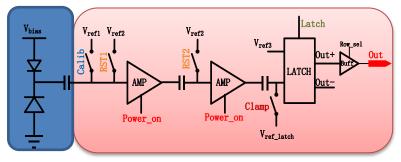
• Sensor characterization ongoing

- Noise level
- Gain calibration with ⁵⁵Fe
- Charge collection efficiency with ⁹⁰Sr
- Irradiation with Neutron
- Test beam in Aug. 2018


X. Shi, CEPC Workshop Rome May 24-26 2018

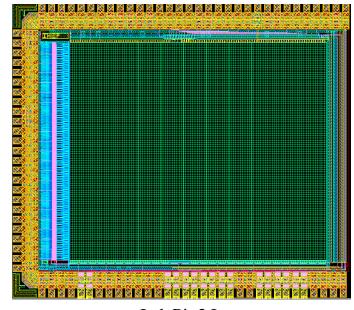

Y.Zhang, et al, NIMA 831(2016)99-104

⁵⁵Fe Source Calibration


Test results from JadePix1: *diode* + *SF structure*

JadePix2 design: Rolling-shutter Mode

Version 1: differential amplifier + latch



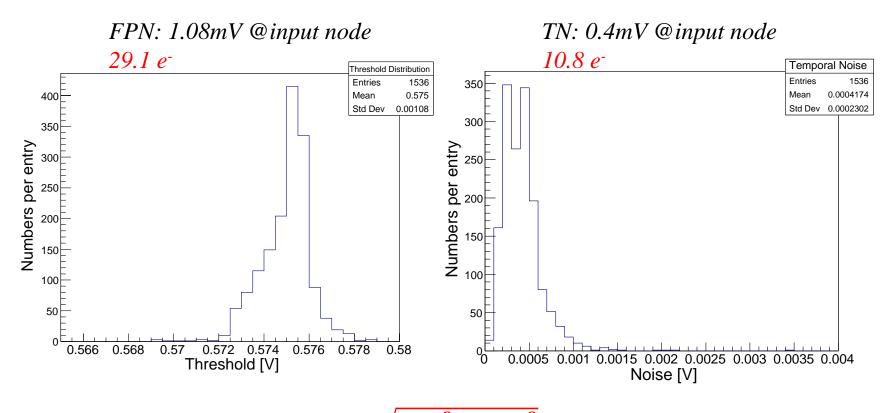
Version 2: two stage CS amplifiers + latch

Submitted in 2017.

Two different pixel versions:

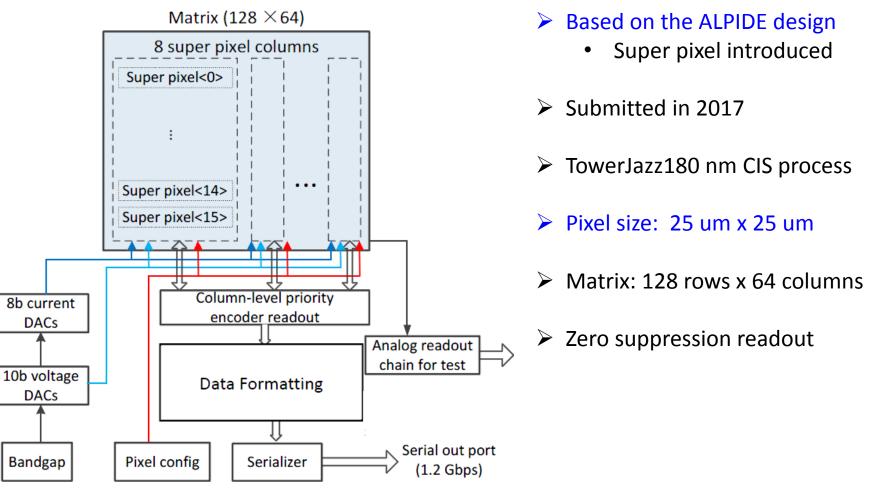
- Amplifier + Discriminator
- Pixel size: $22\mu m \times 22\mu m$
- Positively biased sensing diode;
- Offset cancellation technique;

JadePix2 Layout


Chip features:

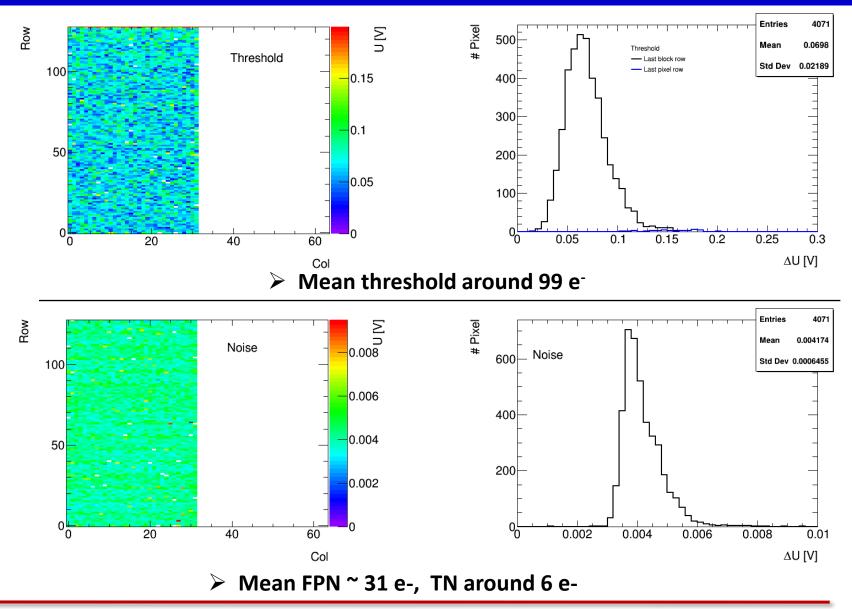
- 3×3.3 mm²
- 96×112 pixels with 8 sub-matrix
- Processing speed: 11.2μ s/frame with 100 ns/row
- Output data speed: 160 MHz
- Power: 3.7μA/pixel (14.4 mW/cm² @pixel matrix)

Y. ZHOU, HSTD11, OKINAWA Dec. 10-15 2017


July 6 , 2018

Noise Measurement of JadePix2

Total noise = $\sqrt{29.1^2 + 10.8^2} = 31 e^{-1000}$ Converted by simulation results, not calibrated yet

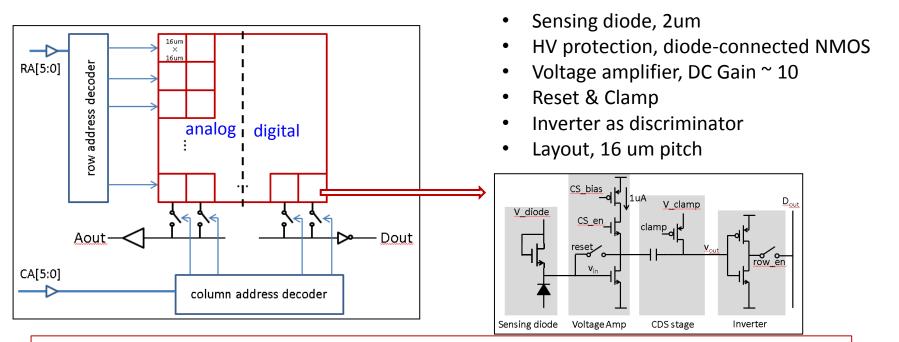

MIC4 Design: Asynchronous Mode

MIC4 over all block diagram

P. YANG, CEPC Workshop WUHAN Apr. 19-21 2017

Threshold and Noise distribution in MIC4

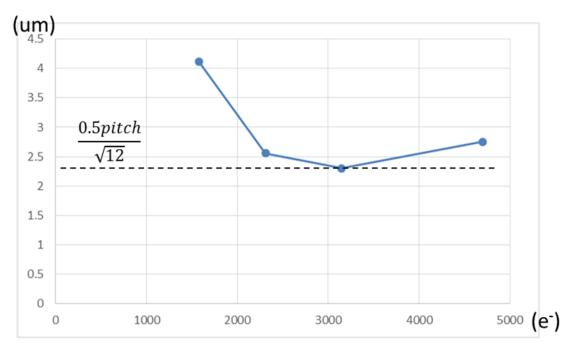
July 6 , 2018


R&D Activities - SOI Pixel Sensor

• First submission (<u>CPV1</u>) in June 2015

- 16*16 μm with in-pixel-discriminator
- Double-SOI process for shielding and radiation enhancement

• Second submission (<u>CPV2</u>) in June 2016


- In-pixel CDS stage inserted
- To improve RTC and FPN noise
- Thinned down to $75 \ \mu m$

Yunpeng Lu, et al, A prototype SOI pixel sensor for CEPC vertex, FEE2018, May 2018

Spatial Resolution

- 1064nm laser beam
 - Focused beam waist ~ 3.4 um
 - Intensity adjustable
- Spatial resolution versus signal charge
 - Obtained the best resolution of 2.3um at around 3000e⁻ signal charge
 - Consistent with the simulation

S.P. resolutin as a function of signal charge

July 6 , 2018

Future Plan on R&D

- Laboratory and test-beam characterizations
- Coordination of sensor design team for next submission
- Novel readout scheme
- Large area pixel array design
- Radiation hardness
- Time stamp @ Z-pole?
- Small ($16\mu m \times 16\mu m$) pixel, targeting on $3\mu m$ single point resolution
 - To explore SOI 3D connection technology by designing the in-pixel digital logic in a separated tier
 - Or to look for any new process

Summary and Outlook

- R&D focused on the inner layer of the Vertex
- CPS & SOI prototype design submitted
 - in-pixel electronics, small pixel size
 - new asynchronous readout architecture
- Preliminary test results is encouraging
 - 2.3um resolution achieved on 16 um small pitch with in-pixel discriminator
- Engineering run submission is planned in 2019-2020

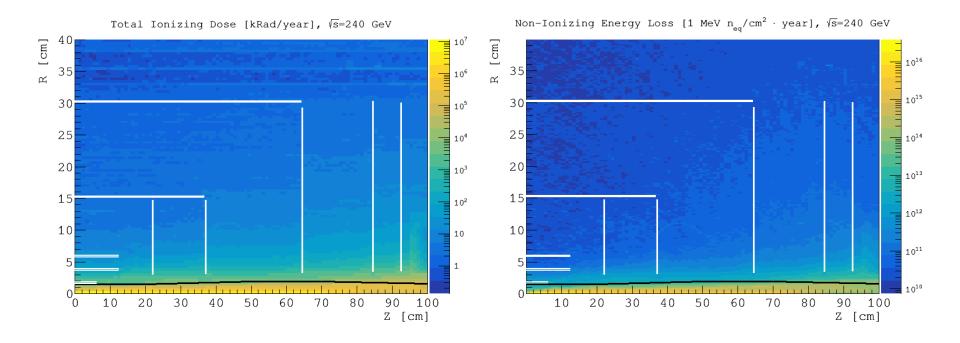
Acknowledgements

This work is partially supported by

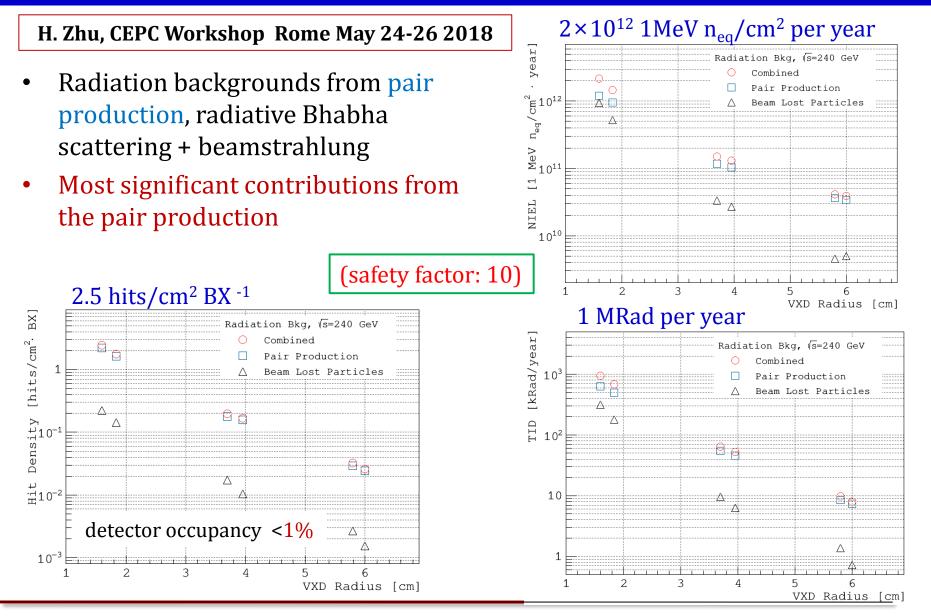
- The National Nature Science Foundation of China, Grant 11575220 & 11505207 & 11605071 & 11605217, and
- The National Key Program for S&T Research and Development, Grant 2016YFA0400400

Thank you for your attention!

CEPC CDR Parameters

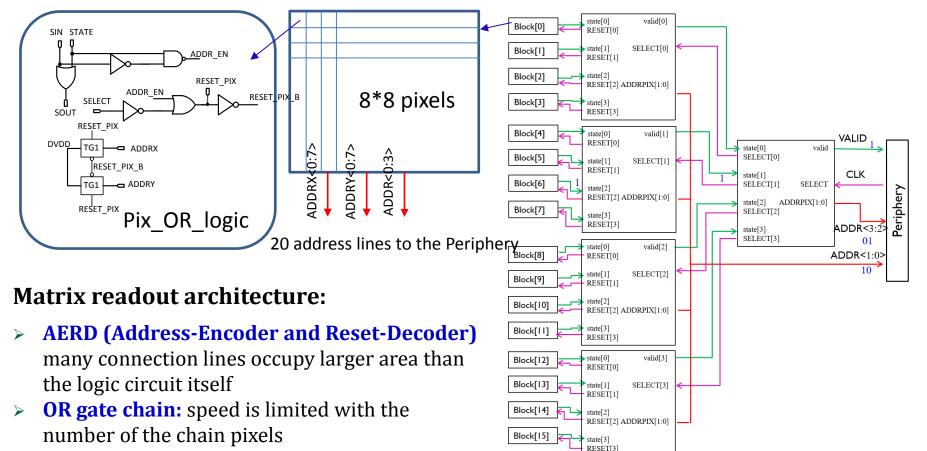

D. Wang

	Higgs	W	Z (3T)	Z (2T)	
Number of IPs	2				
Beam energy (GeV)	120	80	45.5		
Circumference (km)	100				
Synchrotron radiation loss/turn (GeV)	1.73	0.34	0.036		
Crossing angle at IP (mrad)	16.5×2				
Piwinski angle	2.58	7.0	23.8		
Number of particles/bunch N_e (10 ¹⁰)	15.0	12.0	8.0		
Bunch number (bunch spacing)	242 (0.68µs)	1524 (0.21µs)	12000 (25ns+10%gap)		
Beam current (mA)	17.4	87.9	461.0		
Synchrotron radiation power /beam (MW)	30	30	16.5		
Bending radius (km)	10.7				
Momentum compact (10-5)	1.11				
β function at IP β_x^* / β_y^* (m)	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001	
Emittance $\varepsilon_{\rm r}/\varepsilon_{\rm v}$ (nm)	1.21/0.0031	0.54/0.0016	0.18/0.004	0.18/0.0016	
Beam size at IP $\sigma_{\rm x}/\sigma_{\rm y}$ (µm)	20.9/0.068	13.9/0.049	6.0/0.078	6.0/0.04	
Beam-beam parameters ξ_x/ξ_y	0.031/0.109	0.013/0.106	0.0041/0.056	0.0041/0.072	
RF voltage V_{RF} (GV)	2.17	0.47	0.10		
RF frequency f_{RF} (MHz) (harmonic)	650 (216816)				
Natural bunch length σ_z (mm)	2.72	2.98	2.42		
Bunch length σ_z (mm)	3.26	5.9	8.5		
Betatron tune v_x/v_y	363.10 / 365.22				
Synchrotron tune v_s	0.065	0.0395	0.028		
HOM power/cavity (2 cell) (kw)	0.54	0.75	1.94		
Natural energy spread (%)	0.1	0.066	0.038		
Energy acceptance requirement (%)	1.35	0.4	0.23		
Energy acceptance by RF (%)	2.06	1.47	1.7		
Photon number due to beamstrahlung	0.29	0.35	0.55		
Lifetime _simulation (min)	100				
Lifetime (hour)	0.67	1.4	4.0	2.1	
F (hour glass)	0.89	0.94	0.	99	
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	10.1	16.6	32.1	

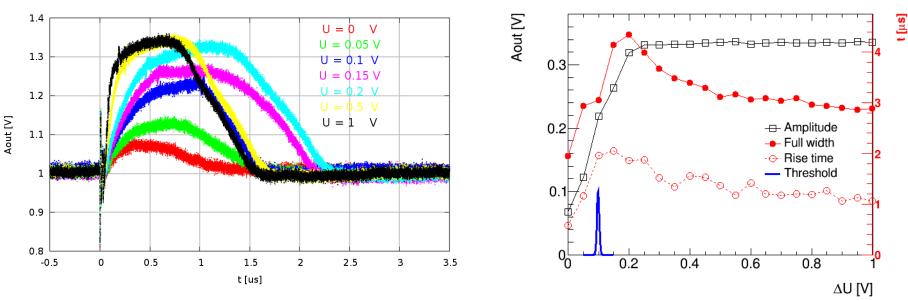

Radiation Background Levels

H. Zhu, CEPC Workshop Rome May 24-26 2018

- Using hit density, total ionizing dose (TID) and non-ionizing energy loss (NIEL) to quantify the radiation background levels
- Adopted the calculation method used for the ATLAS background estimation (ATL-GEN-2005-001), safety factor of ×10 applied



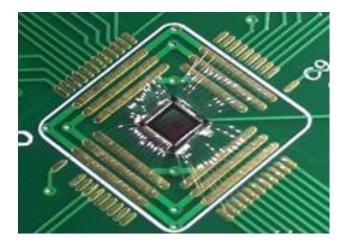
Combined Beam-Induced Backgrounds

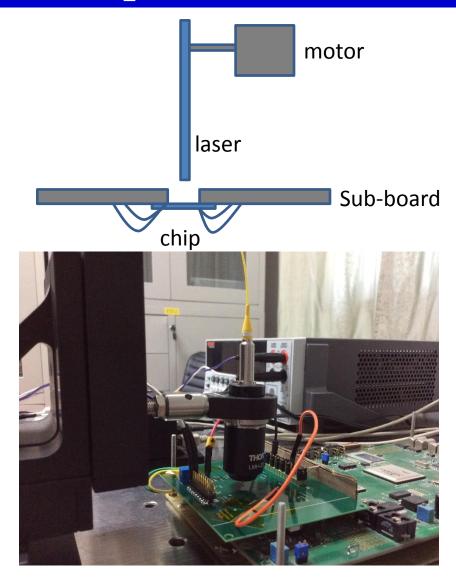

July 6 , 2018

MIC4 Readout architecture

 Combine these two solutions: 64 pixels as a group using OR gate chain, groups using AERD structure to readout

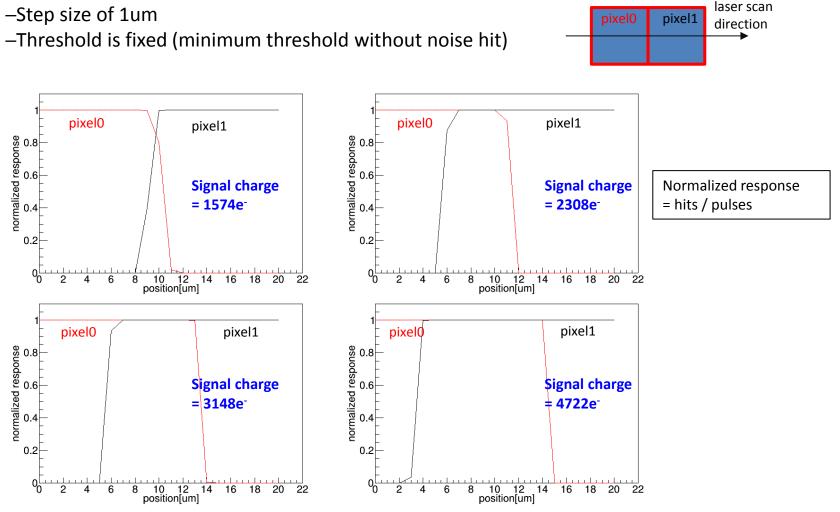
Characterization of Analog Front-end in MIC4




Analog output parameters as a function of the amount of injected charge.

- The front-end response is non-linear which is as expected.
- Peaking time < 1 μ s, duration < 3 μ s, close to the simulation results.

Laser Test Setup


- 1064nm laser beam
 - Focused beam waist ~ 3.4 um
 - Energy adjustable ~ pJ/pulse
- 3-dimensional stepping motor
 - Minimum step size: 0.1um
- Thinning chip (75 um)
 - Backside illumination (no aluminum)

Laser position scan with different laser intensity

Scan two adjacent digital pixels

