Development of TPC detector module and prototype with laser calibration for CEPC

Huirong Qi

Yulan Li, Zhi Deng, Haiyun Wang, Yiming Cai, Liu Ling, Yulian Zhang, Manqi Ruan, Ouyang Qun, Yuanning Gao, Jian Zhang

Institute of High Energy Physics, CAS Tsinghua University ICHEP, Seoul, July, 06, 2018

Outline

- Physics requirements
- Status of TPC module R&D
- Status of TPC prototype R&D
- Summary

Physics requirements

Motivation of TPC with MPGD Critical technology challenges

CEPC Detector for CDR

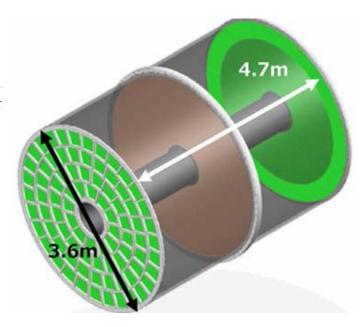
One detector option for the IP: VTX+TPC+ECAL+HCAL

Feasibility & Optimized Parameters

Feasibility analysis: TPC and Passive Cooling Calorimeter is valid for CEPC

	CEPC_v1 (~ ILD)	Optimized (Preliminary)	Comments
Track Radius	1.8 m	>= 1.8 m	Requested by Br(H->di muon) measurement
B Field	3.5 T	3 T	Requested by MDI
ToF	-	50 ps	Requested by pi-Kaon separation at Z pole
ECAL Thickness	84 mm	84(90) mm	84 mm is optimized on Br(H->di photon) at 250 GeV;
ECAL Cell Size	5 mm	10 – 20 mm	Passive cooling request ~ 20 mm. 10 mm should be highly appreciated for EW measurements – need further evaluation
ECAL NLayer	30	20 – 30	Depends on the Silicon Sensor thickness
HCAL Thickness	1.3 m	1 m	-
HCAL NLayer	48	40	Optimized on Higgs event at 250 GeV;

From Manqi's talk


TPC requirements for collider concept

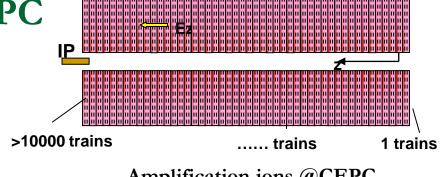
TPC could be as one tracker detector option for CEPC, 1M ZH events in 10yrs $E_{cm} \approx 240$ GeV, luminosity $\sim 2 \times 10^{34}$ cm⁻²s⁻¹, can also run at the Z-pole

TPC detector concept:

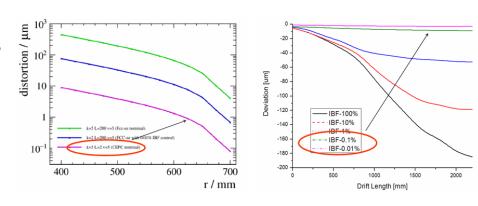
- Motivated by the H tagging and Z
- □ ~3 Tesla magnetic field
- ~100 μm position resolution in rφ
 - ~60μm for zero drift, <100μm overall</p>
 - □ Systematics precision (<20µm internal
- □ Large number of 3D points(~220)
- **□** Distortion by IBF issues
- ightharpoonup dE/dx resolution: <5%
- □ Tracker efficiency: >97% for pT>1GeV
- 2-hit resolution in $r\varphi$: ~2mm
- Momentum resolution: ~10⁻⁴/GeV/c
- □ TPC material budget
 - \circ 0.05 X_0 including outer fieldcage in r
 - \circ 0.25 X_0 for readout endcaps in z

from MoA document of LCTPC@2018

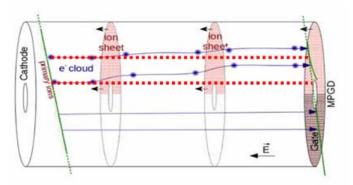
Overview of TPC detector concept


Technical challenges for TPC

Ion Back Flow and Distortion:


- ~100 µm position resolution in r\varphi
- Distortions by the primary ions at **CEPC** are negligible
- More than 10000 discs co-exist and distorted the path of the seed electrons
- The ions have to be cleared during the ~us period continuously
- Continuous device for the ions
- Long working time

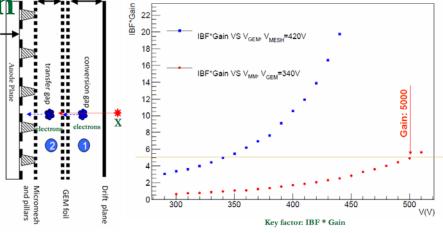
Calibration and alignment:


- Systematics precision (<20 μm internal)
- Geometry and mechanic of chamber
- **Modules and readout pads**
- Track distortions due to space charge effects of positive ions

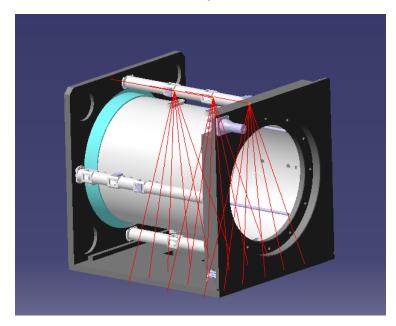
Amplification ions @CEPC

Evaluation of track distortions

Ions backflow in drift volume for distortion


Options of technical solution

Continuous IBF module:


- Gating device may be used for Higgs run
- Open and close time of gating device for ions: ~ μs-ms
- No Gating device option for Z-pole run
- Continuous Ion Back Flow due to the continuous beam structure
- Low discharge and spark possibility

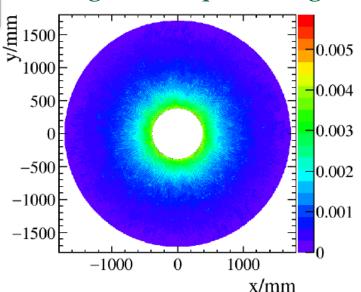
Laser calibration system:

- Laser calibration system for Z-pole run
- The ionization in the gas volume along the laser path occurs via two photon absorption by organic impurities
- Calibrated drift velocity, gain uniformity, ions back in chamber
- Calibration of the distortion
- Nd:YAG laser device@266nm

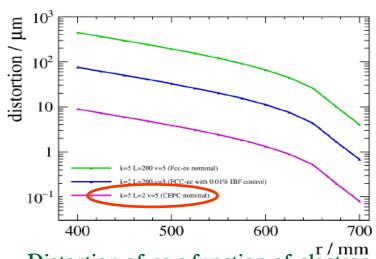
Continuous IBF prototype and IBF × Gain

TPC prototype integrated with laser system

High rate at Z pole


- Voxel occupancy
 - □ The number of voxels /signal
 - 9 thousand Z to qq events
 - □ 60 million hits are generated in sample

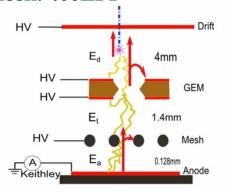
 $IBF \times Gain: <5$

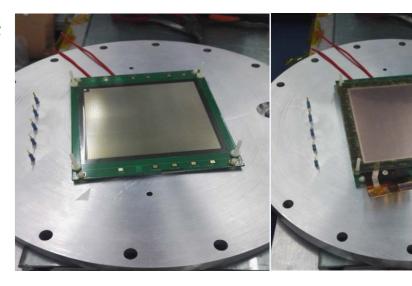

- \Box 4000-6000 hits/(Z to qq) in TPC volume
- Average hit density: 6 hits/mm²
- □ Peak value of hit density: 6 times
- □ Voxel size: 1mm×6mm ×2mm
- □ 1.33×10¹⁴ number of voxels/s @DAQ/40MHz
- □ Average voxel occupancy: 1.33×10^{-8}
- Voxel occupancy at TPC inner most layer:
 ~2×10⁻⁷
- □ Voxel occupancy at TPC inner inner most layer: ~2×10⁻⁵ @FCCee benchmark luminosity

The voxel occupancy takes its maximal value between 2×10^{-5} to 2×10^{-7} , which is safety for the Z pole operation.

ArXiv: 1704.04401 Mingrui, Manqi, Huirong

Hit map on X-Y plan for Z to qq events


Distortion of as a function of electron initial r position -8 -


Investigation of IBF study with module

Combination detector IBF control

Test of the new module

- ☐ Test with GEM-MM module
 - New assembled module
 - □ Active area: 100mm × 100mm
 - □ X-tube ray and 55Fe source
 - Bulk-Micromegas from Saclay
 - Standard GEM from CERN
 - □ Additional UV light device
 - □ Avalanche gap of MM:128µm
 - □ Transfer gap: 2mm
 - □ Drift length:2mm~200mm
 - □ Mesh: 400LPI

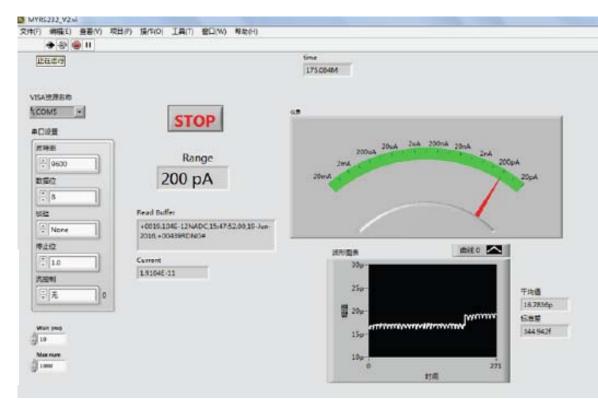
Micromegas(Saclay)

GEM(CERN)

Cathode with mesh

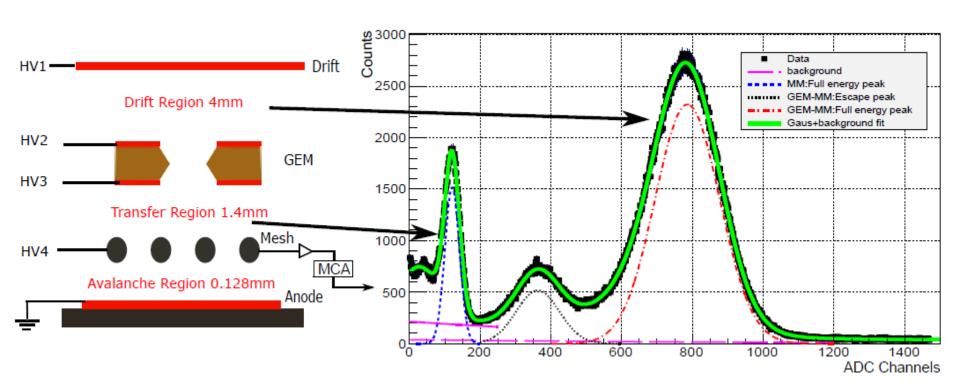
GEM-MM Detector

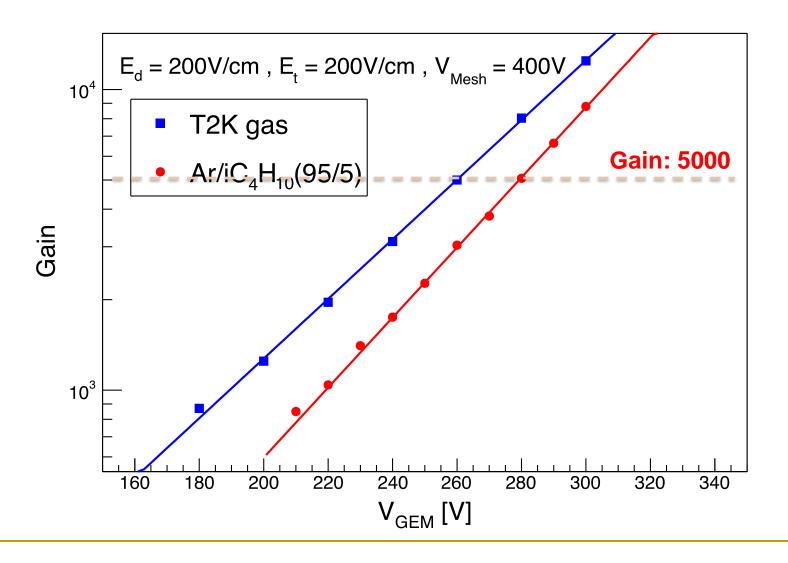
Measurement of GEM-MM module


- Test with GEM-MM module
 - Keithley Electrometers for Ultra-Low Current Measurements: pA~mA
 - □ Keithley: 6517B
 - Test of cathode of the module
 - □ Test of readout anode of the module
 - Labview interface of the low current to make the record file automatically

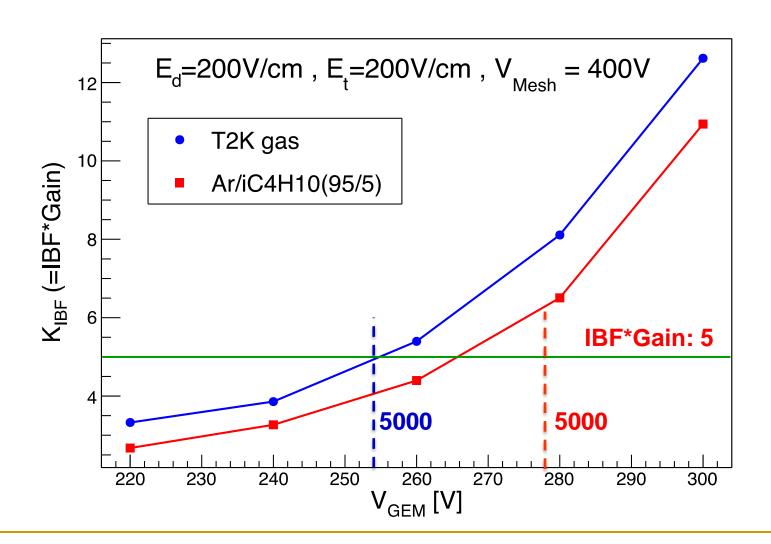
$$IBF = \frac{I_C - I_P}{I_A}$$

Keithley 6517BElectrometer/High Resistance Met
- 20mA, $10\mu V$ - 200V, 100Ω - $10P\Omega$ Brand:Keithley
Model No:Model No:6517B


A Tektronix Company


GEM+MM@CEPC R&D

e+e- machine Primary N_{eff} is small: ~30 Photo peak and escape peak are clear! Good electron transmission. Good energy resolution.



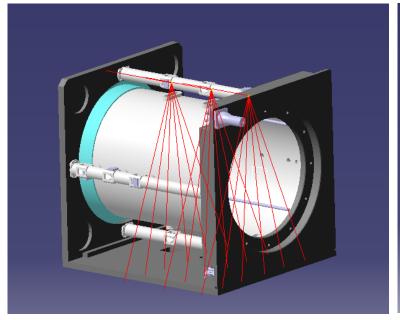
- DOI: 10.1088/1748-0221/12/04/P0401, JINST, 2017.4
- DOI: 10.7498/aps.66.072901 Acta Phys. Sin. 2017,66(7)
- DOI: 10.1088/1674-1137/41/5/056003, CPC,2016.11

Gain of the hybrid structure detector

Key IBF factor: IBF × Gain

Status of TPC prototype R&D

Drift velocity @Gas/P/T/Operation

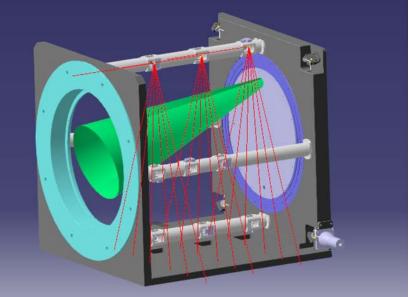

Uniformity

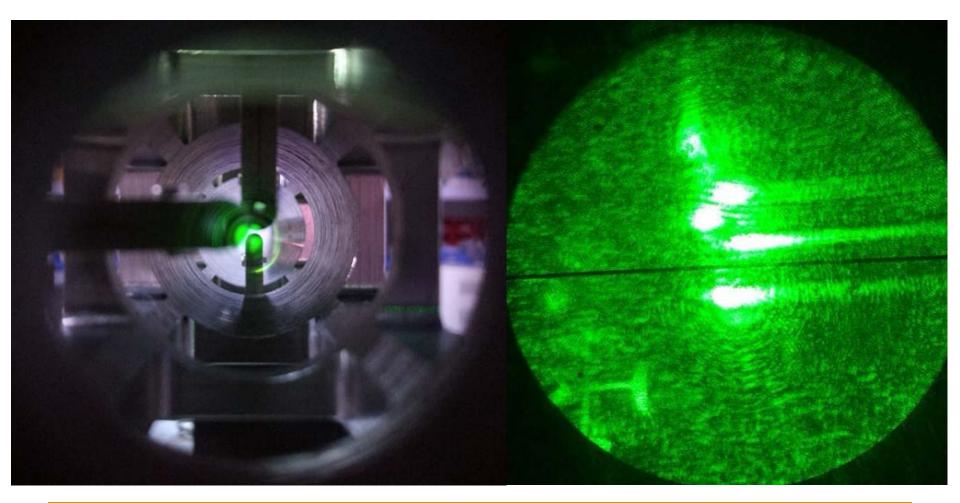
Online calibration

Distortion

Parameters of the TPC prototype

- TPC prototype: the estimation of the distortion due to the IBF, and the study of related physics parameters
- Main parameters
 - Drift length: 510mm
 - □ Readout active area: 200mm × 200mm
 - □ Integrated the laser calibration with 266nm
 - □ GEMs/Micromegas as the readout




Diagram of the TPC prototype with the laser calibration system

Detector with the laser system - 17 -

Details of the laser calibration system 1 minutes = 1/60 degree

Precision (parallel light telescope test) : $<\pm 5$ minutes

Split mirrors of the laser system and the position of the laser

Design of the prototype with laser

- □ Support platform: 1200mm × 1500mm (all size as the actual geometry)
- □ TPC barrel mount and re-mount with the Auxiliary brackets
- Readout board (Done), Laser mirror (Done), PCB board (Done)

Summary and further R&D

Continuous IBF module for CEPC:

- □ No Gating device options used for Higgs/Z pole run
- Continuous Ion Back Flow due to the continuous beam structure
- Key factor: $IBF \times Gain=5$ and leas than (R&D)
- Low discharge and the good energy spectrum

Prototype with laser calibration for CEPC:

- □ Calibrated drift velocity, gain uniformity, ions back in chamber
- □ Prototype has been designed with laser (Developed in IHEP and Tsinghua)
- Nd:YAG laser device@266nm, 42 separated laser beam along 500mm drift length

Collaboration:

- Signed MOA with LCTPC international collaboration on 14, Dec., 2016
- New design detector collaborated CEA-Saclay

Thanks.