

Introduction – Resistive Micromegas detectors

Resistive Micromegas:

Now a mature technology for HEP experiments also taking advantage of the intense phase of R&D for the ATLAS Experiment were resistive strips MM will be employed in the New Small Wheel upgrade of the Muon Spectrometer (see talks at this Conference by by Athina Kourkoumeli-Charalampidi and Maximilian Herrmann on Thursday July 5th)

- Resistive anode strips → suppress the intensity of discharge
- Large area: total surface of ~1200 m2 of gas volumes
- Operation at moderate hit rate up to ~15 kHz/cm² during the phase of High-Luminosity-LHC

Detector R&D: Small Pads Resistive micromegas

GOAL: Development of Resistive Micromegas detectors, aimed at operation under very high rates (~10 MHz/cm²)

- R&D BASIC STEPS:
 - Optimization of the spark protection resistive scheme
 - o Implementation of Small pad readout (allows for low occupancy under high irradiation)
- From existing R&D(see acknowledgement) we aim at reducing the pad size from ~1cm² to < 3mm².
- Possible application: ATLAS very forward extension of muon tracking (Large eta Muon Tagger option for future upgrade)

Layout of the small size prototypes:

- Matrix of 48x16 pads
- Each pad: 0.8mm x 2.8mm (pitch of 1 and 3 mm in the two coordinates);
- Active surface of 4.8x4.8 cm²
 with a total of 768 channels

Resistive Layers Configurations

Two series of small pad resistive micromegas prototypes built so far with pad dimension 3 mm².

The two series differ for the implementation of the resistive protection system against discharges:

SERIES 1 – EMBEDDED RESISTORS

- Screen printing technique
- Patterned resistive layer: separate resistive pads with embedded resistors ~3-7 MΩ

SERIES 2 – DLC (Diamond Like Carbon) LAYER

- Double DLC resistive layer with a resistivity of ~50-70 MΩ/□
- Connection to ground through resistive vias (few mm apart)
- Design driven by recent developments of μ-RWell detector (see talk by M.Poli-Lener this morning)
- Uniform resistive layer

- All prototypes with same anode configuration: Matrix of 48x16 pads
- Pad size 0.8mm x 2.8mm (pitch of 1 and 3 mm in the two coordinates)
- Total # Channels: 768

Characterization of the detectors

Gain Measurements with sources and X-rays

Two radiation sources have been used:

- 55Fe sources with 2 two different activities
 - o "Low activity" (total rate of 1.3 kHz)
 - o "High activity" (total rate of 128 kHz)
- 8 keV Xrays peak from a Cu target with different intensities varying the gun excitation current

For both prototypes gain has been measured with two methods

- Reading the detector current from readout pads with a picoammeter and counting signal rates from the mesh
- Signals amplitude from a Multi Channel Analyser (MCA)

Xrays Gun

Gas mixture: Ar:CO₂ 93:7

Embedded Resistors Prototype - Gain results

- observed a reduction vs time of the detector current with High intensity ⁵⁵Fe source
- ~25% gain reduction already observed with different intensities ⁵⁵Fe sources

Interpretation of the 20-25% reduction: dielectric charge up (exposed kapton between pads)

Embedded Resistors – Gain with High rate X-rays

Gain as a function of rate for five different amplification voltages obtained with Cu plate with 10mm diameter hole

Gain reduction ~25% up to 12 MHz/cm² same reduction as already observed with 55Fe intense source

Gain in an extended range of rates obtained with a collimator of 3 mm compared with data with a Cu plate with 10mm diameter hole

Xrays, HV 530V - 730V

Gain drop increases as rate goes up.

Still able to reach gain of 4x10³ at a rate of 150 MHz/cm² of 8 keV photons

DLC prototype - Charge Spectrum and Gain

⁵⁵Fe Gain comparison

- DLC Prototype (Series 2) has much better energy resolution:
 - $\circ \frac{\sigma}{\langle E \rangle}$ ~14% Vs ~40% of Embedded Resistor
- No gain reduction observed with DLC series with high intensity ⁵⁵Fe source (~ 128 kHz) [first indication that there is no charge-up effect]

DLC proto - Current Stability

- Paddy_DLC Current measurement Vs Time with X-Rays on/off and increasing rate (X-Ray current) at each step
 - NO charging-up effects
 - o Some instabilities (discharges) to be further investigated (a single defect? more general issue?)

Test Beam SPS H4 at CERN

SPS H4 CERN OCTOBER 2017

Beam:

high energy muons/pions

Both prototypes have been exposed to high energy muons and pions beams at the CERN SPS H4 beam line

- Embedded Resistor and DLC Prototypes under test
- o Tracking system: 2 Tmm strips micromegas (x-y readout) for external tracking
- o Gas: Ar:CO2 93:7
- Scintillators for triggering
- DAQ: SRS + APV25 with custom DAQ

Spatial Resolution – Embedded resistors Vs DLC

Position resolution: difference between the cluster position on prototype and extrapolated position from external tracking chambers.

Embedded Resistors

DLC

Precision coordinate (pad pitch 1 mm)

Significant improvement of spatial resolution (pad charge weighted centroid) on the DLC prototype

More uniform charge distribution among pads in the cluster

Second coordinate (pad pitch 3 mm)

Similar resolution.

Dominated by single pad cluster (in this coordinate)

 \rightarrow 3 mm/ $\sqrt{(12)}$ = 0.866 mm

Summary

- Two small-pad resistive micromegas, with different concepts of the spark protection resistive system, have been tested and compared:
- Series-1 Embedded Resistor type with patterned resistive layer shows
 - a very good performance under high rate (operate with a gain of 4000 at 150 MHz/cm2 with X-rays);
 - moderate energy resolution ($\frac{\sigma}{\langle E \rangle} \sim 40\%$) (not critical for us);
 - good position resolution (190 μm);
 - evidence of dielectric charge-up effects (reduction of ~25% in gain and then saturate)
- Series-2 with uniform DLC resistive layer PRELIMINARY results show:
 - Much better energy resolution ($\frac{\sigma}{\langle E \rangle}$ ~10%) (expected more uniform electric field no pad border effects);
 - Good performance under high rates up to several MHz/cm²
 - no charge-up effects;
 - very good position resolution (~120 μm);

THANK YOU!

ACKNOWLEDGEMENT

CERN RD51 Collaboration for the continuous support and the CERN GDD Lab for MPGD tests.

Rui De Oliveira and Antonio Teixeira (CERN EP-DT)

R&D based on previous developments of Pad micromegas for COMPASS and for sampling calorimetry:

- C. Adloff et al., Construction and test of a 1x1 m² Micromegas chamber for sampling hadron calorimetry at future lepton colliders NIMA 729 (2013) 90–101.
- M. Chefdeville et al. Resistive Micromegas for sampling calorimetry, a study of charge-up effects, Nucl. Inst. Meth. A 824 (2016) 510.
- F. Thibaud at al., Performance of large pixelised Micromegas detectors in the COMPASS environment, JINST 9 (2014) C02005.

DLC double resistive layer configuration re-arranged from microResistive Well R&D:

- G. Bencivenni et al., "The micro-Resistive WELL detector: a compact spark-protected single amplification-stage MPGD" 2015_JINST_10_P02008
- M. Poli-Lener "The μ-RWELL detector for the the phase 2 upgrade of the LHCb Muon System Upgrade" TALK this morning

BACKUP

DLC proto - Gain Vs rate

Gain drop as a function of X-rays rate, spot size and impact position (different distance of grounding vias)

- Gain drop of about 20% at few MHz/cm² with a sheet resistivity of the DLC layer of 70 MΩ/sq
- With 1 mm wide photon spot no gain drop is observed up to several MHz/cm²
- Gain drop slightly depends from the pitch of the conducting vias between the two DLC layers and the readout pads.

Two regions with different pitch of the grounding vias

- One region with vias on the two layers every 6 mm.
- The other every 12 mm

Embedded Resistors EFFICIENCY

• Efficiency greater than 99% for muons and still above 98% for high energy pions up to a trigger rate of 400 kHz, corresponding to a pion rate of few MHz/cm2 in the middle of the pion beam spot

Embedded resistor - muon and high rate pion spatial resolution

Next Steps and Outlook

- Next steps are following two parallel paths:
 - Optimizing sheet resistivity and pitch of the conducting vias pattern in DLC double layer prototype to cope with the requirement of a full operation beyond tens of MHz/cm2
 - A first version of a prototype with embedded electronics on the back-end of the anode
 PCB have been built to solve the problem of the signal routing when scaling to larger

surface

- Unfortunately the first prototype showed many electrical problems.
- After the debug a second version is under production

