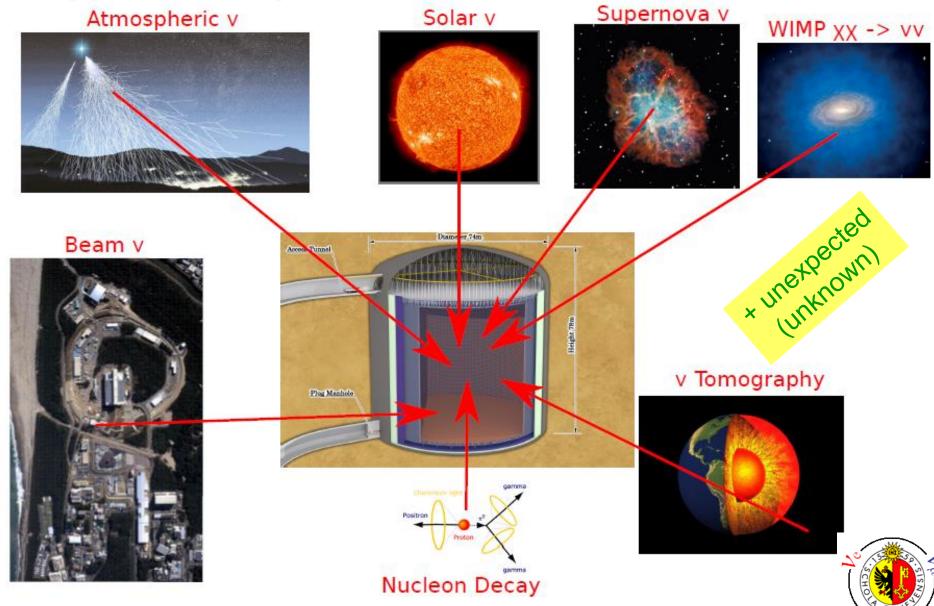


http://hyperk.org

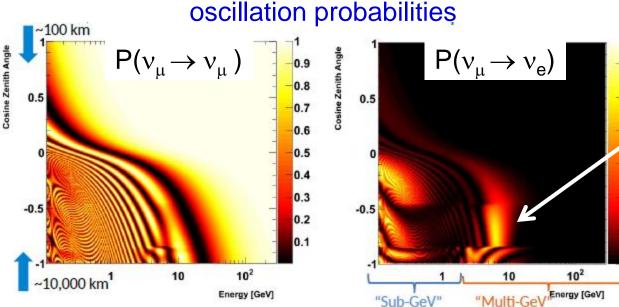
Oscillation Physics with Atmospheric Neutrinos at Hyper-Kamiokande

Alessandro Bravar on behalf of the Hyper-K Collaboration


ICHEP2017 Seoul, July 05, 2018 $\pi^+
ightarrow \mu^+ +
u_\mu$ $\mu^+
ightarrow e^+ +
u_e + \overline{\nu}$

Cosmic

Hyper-K Physics Overview



2

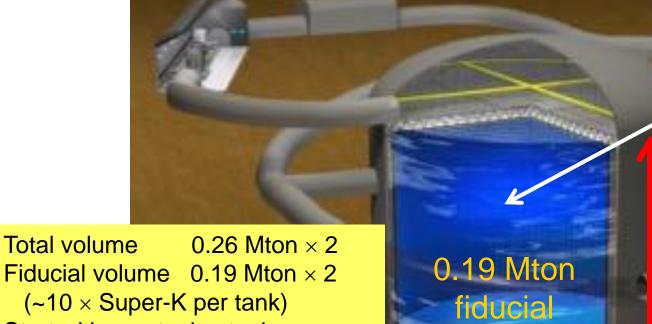
Atmospheric Neutrinos

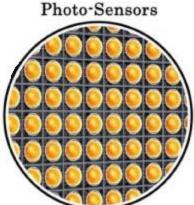
Isotropic flux of cosmic rays Large range of neutrino energies v_{μ} , $\overline{v_{\mu}}$, v_{e} , $\overline{v_{e}}$ over several decades in energy Baseline from 10 km to 13,000 km Oscillation dominated by $v_{\mu} \rightarrow v_{\tau}$ In principle, sensitive to all PMNS parameters With larger statistics, they can also provide information on sub-leading effects

$\phi_{vx} E_v^3 (m^2 sec^{-1} s r^1 GeV^2)$ (a) 2 x V 10¹ 100 10 E, (GeV)

0.1

resonant oscillations between 2 - 10 GeV lead to enhancement of $\nu_{\mu} \rightarrow \nu_{e}$ (NH) or $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$ (IH) appearance probability for upward-going neutrinos

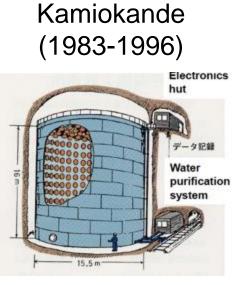

The Hyper-Kamiokande Detector

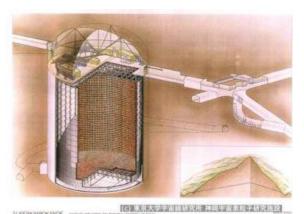

Large Water Cherenkov Detector

Larger mass for more statistics

Better sensitivity by more photons with improved sensors

Overburden ~650 m (~1755 m w.e.)

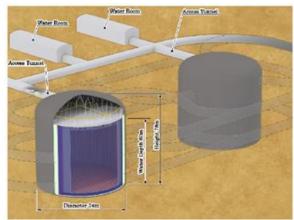

Fiducial volume 0.26 Mton $\times 2$ Fiducial volume 0.19 Mton $\times 2$ (~10 \times Super-K per tank) Start with one tank, staging 40% photo-coverage new sensors with 2 \times larger PDE 40,000 50 cm ϕ ID PMTs 6,700 20 cm ϕ OD PMTs



3 Generations of Kamioka Detectors

Super-Kamiokande (1996-)

3 kton 20% coverage with 50 cm PMT


Observation of SN1987A

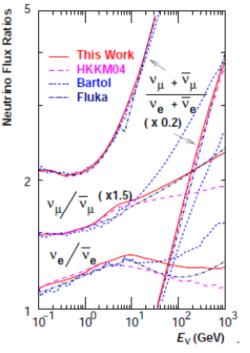
50 kton 40% coverage with 50 cm PMT

Discovery of v oscillations

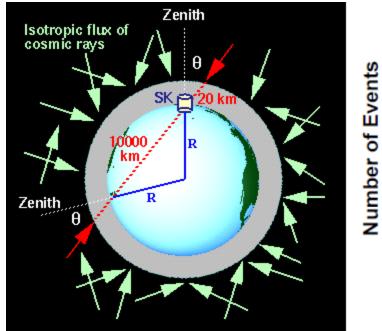
Hyper-Kamiokande (~2026-)

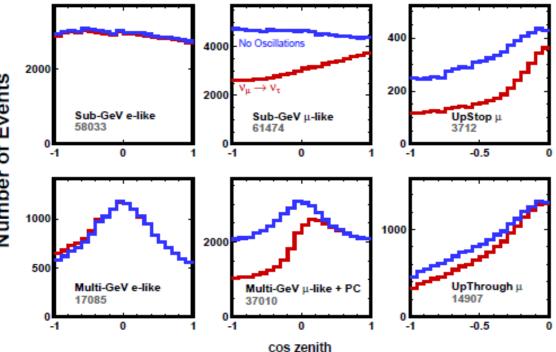
260 kton × 2 40% coverage with high-QE 50 cm PMT

Zenith Angle Distributions

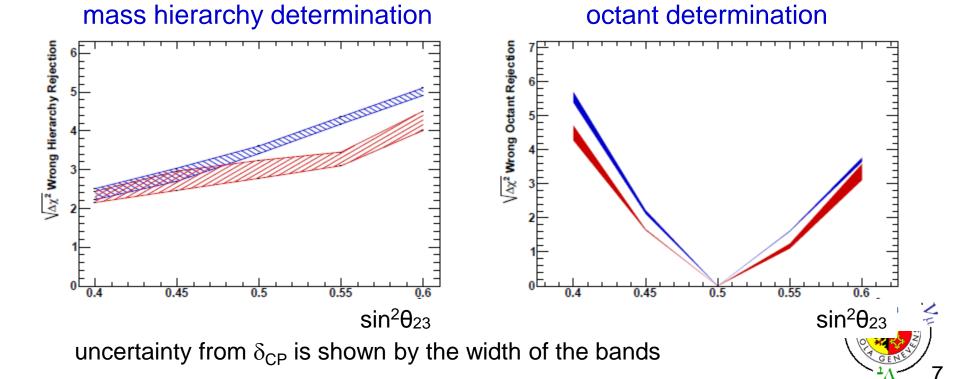

Isotropic flux of cosmic rays

Large range of neutrino energies v_{μ} , $\overline{v_{\mu}}$, v_{e} , $\overline{v_{e}}$ over several decades in energy


Baseline from 10 km to 13,000 km


Oscillation dominated by $\nu_{\mu} \rightarrow \nu_{\tau}$

In principle, sensitive to all PMNS parameters

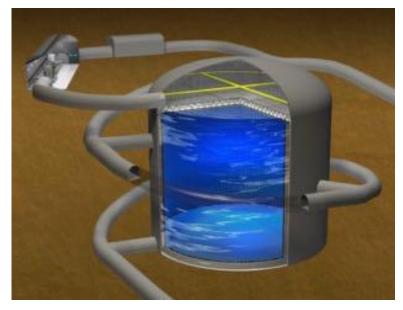

Mass Hierarchy and Octant Sensitivities

atmospheric v only (1.9 Mton year exposure)

Determine mass hierarchy at 3σ when $\sin^2 \theta_{23} > 0.53$ through matter induced resonances

Some sensitivity to θ_{23} octant, can resolve the octant at 3σ if $|\theta_{23}$ -45°|>4°

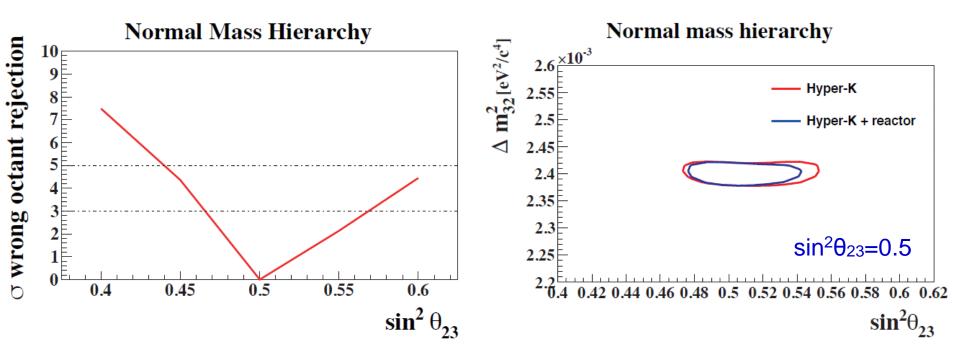
Sensitivities depend on true θ_{23} value


From J-PARC to Kamioka (T2HK)

Atmospheric + beam neutrinos \rightarrow precision oscillation parameter measurements

260 kton Water Cherenkov Detector

Upgraded J-PARC neutrino beam New / upgraded near detectors


T2HK: Sensitivity to Atmospheric param

beam + atmospheric (1.9 Mton year exposure)

δ (Δm²₃₂) ~ 1.4 × 10⁻⁵ eV² (i.e. 0.6% precision) → mass hierarchy sensitivity (with reactor constraint)

 $\delta(\sin^2\theta_{23})$ ~ 0.015 (for sin²θ₂₃ = 0.5) ~0.006 (for sin²θ₂₃ = 0.45) → some ability to determine octant of θ₂₃

joint fit of v_{μ} and v_{e} samples to precisely measure $\sin^{2} \theta_{23}$ and Δm^{2}_{32}

T2HK: Sensitivity to Mass Hierarchy

beam + atmospheric (1.9 Mton year exposure)

Atmospheric neutrinos

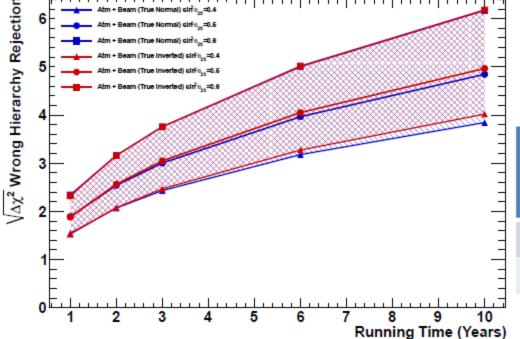
Sensitive to mass hierarchy through matter induced resonance

Size of the effect depends of θ_{23}

Limited precision for θ_{23} and $|\Delta m^2{}_{32}|$

Beam neutrinos

Good precision for θ_{23} and $|\Delta m^2_{32}|$ measurements


Very limited sensitivity to MH

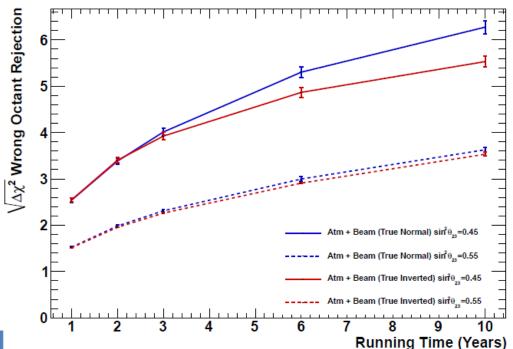
Combining the two

 $>3\sigma$ ability to reject wrong MH

 5σ for larger values of $sin^2\,\theta_{23}$

True sin²θ ₂₃	Atmospheric only	Atmospheric +beam
0.4	2.2 σ	3.8 σ
0.6	4.9 σ	6.2 σ
		GENET

T2HK: Octant Resolution Sensitivity


beam + atmospheric (1.9 Mton year exposure)

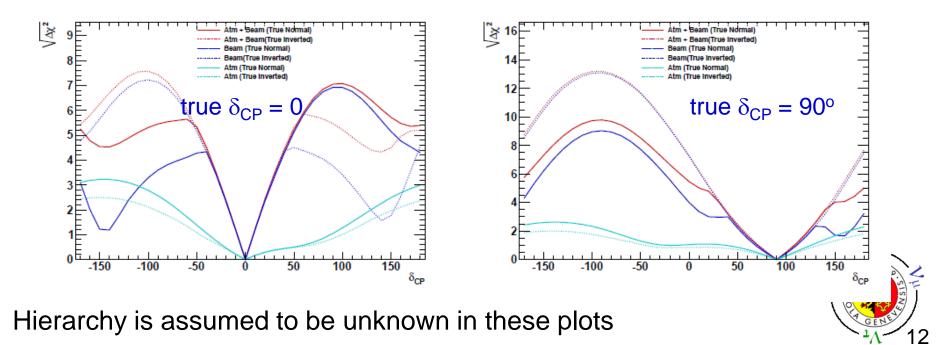
The ability to resolve the θ_{23} octant improves with the combination of atmospheric and beam neutrinos

Atmospheric neutrinos alone can resolve the octant at 3σ if $|\theta_{23}-45^{\circ}|>4^{\circ}$

In a combined analysis it can be resolved when this difference is only 2.3°

True sin²θ ₂₃	Atmospheric only	Atmospheric +beam
0.45	2.2 σ	6.2 σ
0.55	1.6 σ	3.6 σ

T2HK: Sensitivity to CP Violation

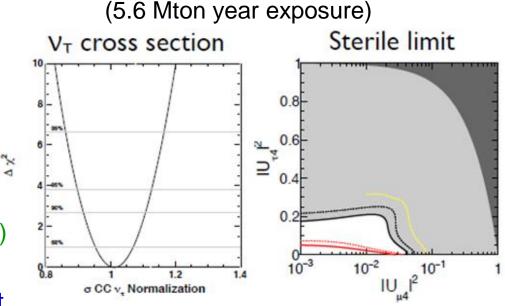


beam + atmospheric (1.9 Mton year exposure)

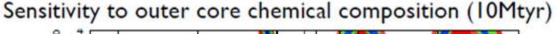
Sensitivity to CP violation mainly dominated by beam neutrinos Atmospheric neutrino sensitivity limited by flux/cross section uncertainties

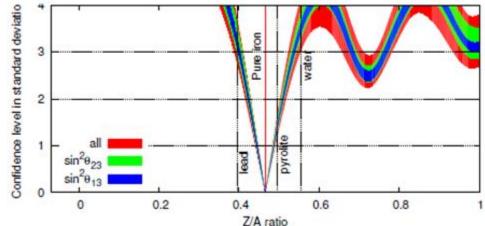
Sensitive to $\cos\,\delta_{\text{CP}}$

Atmospheric neutrinos allow to break possible degeneracies between MH and δ_{CP} when MH is unknown


More Physics with Atmospheric $\boldsymbol{\nu}$

Atmospheric v:


- neutrinos with various energy, flight length, and flavor
- v_{τ} cross section measurement
- Sterile neutrinos
- Lorentz violation studies $(3 4 \times \text{stronger than current SK limits})$


dark matter annihilation into SM part. $(3-5 \times \text{stronger than current SK limits})$

Geophysics

chemical composition of Earth's outer core using matter effect

Conclusions

A new adventure in ν Physics to start

Proto-Collaboration established on January 15th 2015 Collaboration growing ~300 members from 15 countries

A rich physics program:

atmospheric, SN, solar, accelerator neutrinos proton decay

Optimized detector configuration:

built on successful technology established with past/ongoing experiments larger detector improved PMTs (2 x higher QE)

Atmospheric neutrino analyses benefit the most from increased statistics expect better than ~3 σ sensitivity to the mass hierarchy using atmospheric neutrinos alone (~5 σ combining atm + beam v) octant resolution at 3 σ if $|\theta_{23}$ -45°|>4° (2.3° combining atm + beam v) neutrino and antineutrino separation with neutron tagging (will benefit mass hierarchy and increase δ_{CP} sensitivity)

The Hyper-K Collaboration

Formed in Jan. 2015 15 countries ~300 members (and gowing)

