Hadron Production Measurements for Neutrino Experiments with NA61/SHINE

Scott Johnson
University of Colorado Boulder
ICHEP 2018
July 6, 2018

The NA61/SHINE Collaboration

The NA61/SHINE Experiment

- SPS Heavy Ion and Neutrino Experiment
- Broad physics program
 - Heavy Ion
 - Study the onset of deconfinement
 - Critical point search
 - Cosmic Ray
 - Hadron production measurements to tune simulations of cosmic ray showers
 - Neutrino
 - Hadron production measurements to improve precision of neutrino flux estimations
- Capable of receiving secondary beam of charged hadrons (pions, kaons and protons) [~13, 350] GeV/c
- Light ions from Pb fragmentation [13A, 150A] GeV/c
- Primary Ar, Xe and Pb [13A,150A] GeV/c and primary protons [400] GeV/c
- Accepts many solid thin targets, liquid hydrogen and replica targets for neutrino experiments
- Capable of recording over 500,000 events per day

Necessity for Hadron Production Measurements

- Near detectors are insufficient for understanding neutrino flux at the far detector
 - Different angular acceptance and often different interaction material at near and far sites
- Neutrino cross section measurements depend on precise neutrino flux
- Which interactions do we need to understand?
 - Primary interactions of protons with target and beam material (eg. Al, Ti) at the beam energy
 - Secondary interactions of protons, pions and kaons with target and beam material at lower energies
- NA61 is capable of studying most of these interactions

Neutrino Parents in T2K

	Flux percentage of each (all) flavor(s)				
Parent	$ u_{\mu}$	$ar{ u}_{\mu}$	$ u_e$	$ar{ u}_e$	
Secondary					
$oldsymbol{\pi}^{\pm}$	60.0(55.6)%	41.8(2.5)%	31.9(0.4)%	2.8(0.0)%	
K^{\pm}	4.0(3.7)%	4.3(0.3)%	26.9(0.3)%	11.3(0.0)%	
K_L^0	0.1(0.1)%	0.9(0.1)%	7.6(0.1)%	49.0(0.1)%	
Tertiary					
$oldsymbol{\pi}^{\pm}$	34.4(31.9)%	50.0(3.0)%	20.4(0.2)%	6.6(0.0)%	
K^{\pm}	1.4(1.3)%	2.6(0.2)%	10.0(0.1)%	8.8(0.0)%	
K_L^0	0.0(0.0)%	0.4(0.1)%	3.2(0.0)%	21.3(0.0)%	

4

- TPC system tracks charged particles and measures dE/dx (σ_{dE/dx}/<dE/dx> ≈ .04)
- Two Vertex TPCs are contained inside two superconducting vertex magnets (with 9 Tm of bending power)
- Two large Main TPCs
- Gap TPC and three new Forward-TPCs provide forward acceptance
- Time of Flight systems measure m² (~100 ps resolution)

Earlier Measurements for the T2K Experiment

- Thin target measurements from data recorded in 2007 and 2009
- T2K replica target measurements from 2007, 2009 and 2010

2 cm thin carbon target
No.

Beam	Target	Year	Measurements	2 cm thin carbon target
p@31 GeV/c	C 2 cm	2007	$\pi^{\pm 1}$, K^{+2} , K^{0}_{S} , Λ^{03}	
p@31 GeV/c	C 2 cm	2009	π^{\pm} , K^{\pm} , p , $K^0_{\ S}$, $\Lambda^{0\ 4}$	
p@31 GeV/c	C 90 cm	2007	π ^{± 5}	
p@31 GeV/c	C 90 cm	2009	π ^{± 6}	
p@31 GeV/c	C 90 cm	2010	π [±] , K [±] , p, preliminary release ⁷ , paper in progress	
p@31 GeV/c High Field	C 90 cm	2010	Production cross section analysis in progress	

¹ Phys. Rev. C84, 034604 (2011).

90 cm T2K replica target

² Phys. Rev. C85, 035210 (2012).

³ Phys. Rev C89, 025205 (2014).

⁴ Eur. Phys. J. C (2016) 76: 84

⁵ Nucl. Instrum. Meth. A701, 99 (2013)

⁶ Eur.Phys.J. C76 (2016) no.11, 617

⁷ https://edms.cern.ch/document/1828979/1

Effect on Neutrino Flux Prediction

Phys.Rev. D87 (2013) no.1, 012001 and J.Phys.Conf.Ser. 888 (2017) no.1, 012064

- Thin target beam MC reweighting with the 2007 and 2009 (higher stats) NA61 thin target datasets has already improved the T2K flux estimation
- A method has been developed to implement the replica target results into the flux estimation - it is expected to reduce uncertainties related to hadron production to <
 5% everywhere

Select 2010 T2K Replica Target Results

- Plots are for the second longitudinal bin along the replica target
- Statistical errors reduced by factor of 2 compared to 2009
- data Eg. for π^+ : statistical typically < 4%, systematics typically < 3%
- Preliminary results released:

18cm

https://edms.cern.ch/document/1828979/1

 $60 \le \theta < 80 \text{ mrad}$

 $60 \le \theta \le 80 \text{ mrad}$

Total Cross Section Measurements from 2015 Data

- Magnets not operational in 2015, so spectra analysis was not possible
- Total inelastic and total production cross sections were measured for 6 different reactions
- Preprint: arXiv:1805.04546 (2018)
- Paper submitted to PRD

2016 Spectra Data for Neutrino Experiments

- Data for 7 different reactions were recorded calibration ongoing
- π⁺+C@60GeV/c and π⁺+Be@60GeV/c are currently being analyzed
 - Total inelastic and total production cross sections
 - Differential cross sections of charged pions, kaons and protons
 - Differential cross sections of neutral K⁰_S, Λ and Λ

Beam Particle	Beam Momentum	Target
$\boldsymbol{\pi}^{+}$	60 GeV/c	С
π^{+}	60 GeV/c	Ве
р	60 GeV/c	С
р	60 GeV/c	Al
р	60 GeV/c	Ве
р	120 GeV/c	С
р	120 GeV/c	Ве

dE/dx Analysis

- Charged tracks are reconstructed to a main interaction vertex
- Reconstructed momenta are obtained from the vertex fits
- Energy loss is calculated from charge collected in the TPCs
- e[±], π[±], K[±], protons and deuterons fall along their Bethe-Bloch curves (dE/dx from p+C@31GeV/c interactions shown)
- Fits are performed in kinematic bins to discriminate particle species

Analysis of Weakly Decaying Neutral Particles

- A reconstruction algorithm identifies decay vertices of neutral particles by searching for secondary vertices with 1 positively charged track and 1 negatively charged track
- Fits are performed to the invariant mass distributions for K^0_S , Λ or $\overline{\Lambda}$ in each kinematic bin Fitted $m_{\text{Inv KOS}}$, $p_{...}$:[8.0,10.0]GeV/c θ :[0.02,0.04] mrad

Recent Hardware Upgrades: FTPCs and Electronics

- Forward TPCs fill the void in the forward acceptance
- Particularly important for measuring forward scattering of protons and pions
- Began upgrading the readout to a more modern DRS4 system
 - Enabling easier maintenance and customization of detector components

2017 Spectra Data for Neutrino Experiments

- Variety of interactions were studied
 - Including first data to be recorded with the FTPCs installed!
 - New reconstruction framework will be used to reconstruct these datasets
 - Have local tracking, but full reconstruction in progress

Beam Particle	Beam Momentum	Target		
π+	60 GeV/c	Al		BEAM E
π^{+}	30 GeV/c	С		
π-	60 GeV/c	С	w/ FTPCs and F-ToF	1 m
p	120 GeV/c	С	w/ FTPCs and F-ToF	
p	120 GeV/c	Be	w/ FTPCs and F-ToF	
р	90 GeV/c	С	w/ FTPCs and F-ToF	

Combined dE/dx and ToF Analysis

- With the Forward Time-of-Flight system in place, we can perform a combined dE/dx and ToF analysis
- Improves particle identification for momenta less than 10 GeV/c especially in the Bethe-Bloch crossing regions

Data Taking Plans for 2018

- 120 GeV/c protons on NOvA replica target ~ 4 weeks in July 2018 - interactions being recorded now!
- 120 cm target composed of graphite fins
- Replica target installed in NA61 beam
- 1 week of 60 GeV/c K⁺ on thin carbon target scheduled for Fall 2018

NA61 Beyond 2020

- Will resume the NA61 experiment after Long Shutdown 2
- Upgrades to the beamline are being considered
 - Possible tertiary beam allowing for lower energy hadron beams
- Upgrades to NA61 being considered addendum to the SPSC report: https://cds.cern.ch/record/2309890
 - Upgrades to TPC readout and DAQ system allowing 1 kHz readout rate
 - New ToF walls based on mRPC
 - New Beam Positions Detectors based on scintillating fibers
 - Large Acceptance Vertex Detector based on ALPIDE sensors
- Potential measurements for the neutrino program 2021-2024
 - Hadron beams below 18 GeV/c if possible many unstudied/understudied reactions for neutrino experiments could be studied
 - Replica target measurements and dedicated thin target measurements for DUNE
 - Interactions with T2K-II/Hyper-K target material and possibly replica target measurements
 - Low energy measurements for atmospheric neutrino flux estimations
 - Kaon interaction data if more is needed

Summary

- NA61 data has been used to improve T2K's flux prediction and increase precision on physics results!
 - Even better precision will be attained by implementing latest replica target results
- NA61 has been recording interactions relevant for Fermilab neutrino experiments from 2015-2018
 - Paper on total cross section measurements from 2015 dataset is on the arXiv and in the process of being published
 - Analysis of spectra data from 2016 is ongoing
 - Spectra data taken with new FTPCs implemented in 2017
 - NOvA replica target data-taking is ongoing, K++C@60GeV/c in the fall
- NA61 upgrades will enable improved measurements after LS2
 - Most important measurement for DUNE will be **DUNE replica target measurements**
 - Many more thin target and potentially replica target measurements will be made as well selected reactions will depend on what is most important for DUNE and other neutrino experiments

Thank you for your Attention!

- This work is supported in part by the U.S. Department of Energy
- Thanks to all of my collaborators at NA61/SHINE

- National Nuclear Research Center, Baku
- Bulgaria
 - University of Sofia, Sofia
- Croatia
 - IRB, Zagreb
- France
 - LPNHE, Paris
- Germany
 - KIT, Karlsruhe
 - Fachhochschule Frankfurt, Frankfurt
 University of Frankfurt, Frankfurt
- Greece
 - University of Athens, Athens
- Hungary
 - Wigner RCP, Budapest

Japan

- KEK Tsukuba, Tsukuba
- Norway
 - University of Bergen, Bergen
- Poland
 - UJK, Kielce
 - NCBJ, Warsaw
 - University of Warsaw. Warsaw.
 - WUT, Warsaw
 - Jagiellonian University, Kraków
 - ► IFJ PAN, Kraków
 - AGH, Kraków
 - University of Silesia, Katowice
 University of Wrocław, Wrocław
- Russia
 - INR Moscow, Moscov
 - ► JINR Dubna, Dubna
 - ► SPBU, St.Petersburg
 - MEPhl, Moscow

 \sim 150 physicists from \sim 30 institutes

- University of Belgrade, Belgrade
- Switzerland
 - ETH Zürich, Zürich
 - University of Bern, Bern
 University of Geneva, Geneva
- USA
 - University of Colorado Boulder, Boulder
 - LANL, Los Alamos
 - University of Pittsburgh, Pittsburgh
 - FNAL, Batavia
 - University of Hawaii, Manoa

Back-Up

Total Cross Section Data Taken in 2015 - Statistics

 No magnets in 2015, but total cross section data was taken for a variety of interactions

Beam Particle	Beam Momentum	Target	Triggers ×10 ⁶
π^{+}	31 GeV/c	С	1.2
π^{+}	31 GeV/c	Al	0.8
π+	60 GeV/c	С	0.8
π+	60 GeV/c	Al	0.7
K ⁺	60 GeV/c	С	0.7
K ⁺	60 GeV/c	Al	0.5

dE/dx Analysis - Example Fit from π++C@60GeV/c Interactions

V0 Analysis

2000

1800

1600

1400

1.12

- Invariant mass is calculated with a K⁰_S, Λ or Λ hypothesis
- Fits are performed to the invariant mass distributions for each kinematic bin

\$ 6000 \$ 5500

5000

4500

3500

3000 2500

2000

1.1

1.12

 $M_{\overline{\Lambda}}$ [GeV/c²]

