

Office of Science

Results for quasi-elastic anti-neutrino scattering on scintillator from the MINERVA experiment

Heidi Schellman for the MINERvA Collaboration

Big question

Why is almost everything matter instead of antimatter?

- Answer may be CP-violating processes
- Make particle/anti-particle and compare behavior
 - □ Quarks → B, K decays
 - Neutrinos → oscillations

Neutrino CP violation

Neutrinos oscillate between flavors!

Do neutrinos and anti-neutrinos behave the same?

Not necessarily!

Study

 $\nu_{\mu} \rightarrow \nu_{e}$

probability of finding each type of neutrino

 $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$

Oscillations for

 ν_{μ} @ 1300 km

CP phase $\delta = -\pi/2$

Flips for $\delta = \pi/2$

7/5/18

Need to understand anti-neutrino interactions!

- What do interactions look like?
- What is the neutrino energy?
- This is especially important for anti-neutrinos as processes like

$$\overline{\nu} + p \rightarrow \ell^+ + n$$

have hard-to-reconstruct final states

Quasi-elastic scattering on nucleons (CCQE)

In principle 2-body scatter from a nucleon at rest allows full reconstruction of the kinematics from the muon alone.

MINERvA Experiment @Fermilab

5.4 Ton Active Scintillator Fiducial Volume

Steel Shield

MINERVA

Quasi-elastic scattering on CH (scintillator)
Muons tracked and momentum analyzed
Protons > 120 MeV can be detected
Neutrons ~50% of the time

Classic signature:

- Final state muon analyzed in MINOS
- No extra recoil energy!!

Around 14,000 antineutrino candidates in this sample X10 more coming soon!

7/5/18

Complications

Nuclei are complex Fermi motion ... Screening ...

No longer a scatter at rest! 7/5/18

Electron-scattering experiments have found that, approximately 20% of the time, electrons scattered from correlated pairs of nucleons instead of single nucleons.

~90% of these pairs consist of a proton and a neutron.

Initial interaction is not CCQE
But the observed event looks like it

Initial interaction is CCQE but the observed event is not!

*7/5/*18

Two strategies:

QE-like: define a signal that is corresponds to what we see in the final state.

CCQE: correct your signal back to what the initial interaction was.

10 7/5/18

Two strategies:

QE-like (0π) : define a signal that is corresponds to what we see in the final state. More accurate, harder to interpret.

CCQE: correct your signal back to what the initial interaction was.
Less accurate, easier to interpret.

7/5/18

Practical signal definitions

Ideal CCQE

- One charged muon
- One neutron
- No protons
- □ No pions
- Low recoil activity

CCQE-Like = 0π

- One charged muon
- May not see the neutron
- □ No protons > 120 MeV
- □ No pions
- Low recoil activity
- We allow any number of neutrons to include 2p2h contributions

Lots of data - 2D measurement

Can we model this?

- □ Default GENIE 2.8.4
 - (Relativistic Fermi Gas)
- Add in Random Phase Approximation (RPA) to account for screening at low Q²
- Add ~20% 2p2h
 effects guided by Jlab
 results w/o RPA
- Add RPA and tune 2p2h to our neutrino data to get MnvGENIE

How MINERvA tunes the simulation

- Read lots of papers
- □ Listen to our eN→eN colleagues
- Look at the neutrino data where the process is

Look for the final state neutrons in

$$\bar{\nu}_{\mu} + p \to \mu^+ + n$$

- All of these indicate both a need for screening (RPA) at low Q2 and 2p2h effects.
- MINERvA tunes the 2p2h model on neutrino data

Multinucleon Effects

- □ Look at CC double differential cross section in qo and q3
 - \blacksquare qo: calorimetric hadronic energy (would be ω if n could be detected)
 - q₃: is the three momentum transfer

$$q_3 \equiv |\mathbf{q}| = \sqrt{Q^2 + q_0^2}$$

Motivated by electron scattering data on C.

Megias et al., Phys.Rev. D94 (2016) 013012

From Inclusive Neutrino Low Recoil Measurements

Phys.Rev.Lett. 116 (2016) 071802

- □ Fitting a 2D Gaussian in true (q0, q3) as a reweighting function to the 2p2h contribution to get the best agreement between data and MC
- □ The QE and RES interactions are unchanged

Nuclear Effects at low Three Momentum Transfer (Antineutrino)

 Applying the extracted 2p2h weights from the neutrino sample to antineutrino

Phys.Rev.Lett. 120 (2018) no.22, 221805

Neutron detection update

□ MINERvA has a new neutron detection algorithm in scintillator

□ Excess in the MC in the first bin small energy deposition

Bottom line

- Take Relativistic Fermi Gas model with final state interactions (GENIE 2.8.4)
- Add in screening (RPA) and multiparticle (2p2h) effects
- □ Use neutrino data to tune the 2p2h model.
- Get MnVGENIE model which agrees with our inclusive anti-neutrino data.

Back to inclusives now that we understand our simulation:

1-D distributions for QE-like

21

Systematic uncertainty sources

— · Statistical uncertainty

Backaround models

resonances

CCQE / 2p2h model

Final-state interactions

pion absorption dominates

<u>Flux</u>

beam focusing

tertiary hadron production

reweight to other experiments

Muon reconstruction

muon energy scale dominates

tracking efficiency

muon angle and vertex position

Recoil reconstruction

detector response to different particles - neutron dominates

Switch to CCQE to compare to other experiments Bridge the gap!

MINERvA result includes an angle cut which lowers rate for E<4 GeV

23 7/5/18

Conclusions

- We have measured anti-neutrino quasi-elastic scattering on scintillator with uncertainties dominated by the 7-8% flux normalization uncertainty.
- Bridges the gap between MiniBooNE and NOMAD
- Able to differentiate nuclear models we favor a 2p2h component
- More details in <u>Cheryl Patrick's June 17 seminar</u> and her thesis (FNAL THESIS-2016-04)
- Published as <u>10.1103/PhysRevD.97.052002</u>
- □ Data tables at: https://arxiv.org/abs/1801.01197
- Data from Medium Energy Run at higher energy coming soon.

The anti-neutrino team: Heidi Schellman, Cheryl Patrick, Laura Fields

Backup slides

NuMI low energy anti-neutrino flux

Muon kinematics acceptance

We measure the cross section in ~ 60 muon p_z , p_T bins

2-D cross sections are normalized to integrated neutrino flux per nucleon

Model details

- We use GENIE 2.8.4 as our baseline Monte Carlo generator
- Nuclear effects
 - Relativistic Fermi Gas model with Bodek-Ritchie tail
 - □ Fermi momentum k_F=221 MeV
 - non-resonant pion production scaled by 57% to match fits to bubble chamber data as detailed in arXiv:1601.01888
 - RPA and 2p2h are added for the MnvGENIE model we use to correct our data.
- □ Nucleon effects
 - □ Proton form factor Axial mass M_A=0.99 GeV
 - BBBA05 model for vector form factors

Cross section vs Q²

Model references

- Transverse Enhancement Model: A. Bodek, H. Budd, and M. Christy, Eur.Phys.J.
 C71, 1726 (2011)
- Spectral Functions: O. Benhar, A. Fabrocini, S. Fantoni, and I. Sick, Nucl. Phys. A579, 493 (1994)
- Meson Exchange Currents: J. Nieves, I. Ruiz Simo and M. J. Vicente Vacas, Phys.
 Rev. C 83 (2011) 045501
- Local Fermi Gas: AK. S. Kuzmin, V. V. Lyubushkin, and V. A. Naumov, Eur.Phys.J.
 C54, 517 (2008)
- Relativistic Fermi Gas: R. Smith and E. Moniz, Nucl. Phys. B43, 605 (1972)
- □ NuWro: T.Golan, C. Juszczak and J.T.Sobczyk, Phys.Rev. C86, 015505 (2012)
- □ GENIE: C. Andreopoulos et al., arXiv:1510.05494
- Random Phase Approximation: J. Morfin, J. Nieves, J. Sobsczyk, Adv. High Energy Phys. 2012 (2012) 934597

