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Motivation
Next generation of long baseline experiments 
aiming for CP discovery.

* real data cosmic ray in 3x1x1 Dual phase TPC

tracks and vertex with 3 mm granularity

 High resolution imaging is the key to 
efficient background rejection and 
good particle identification.

Dual phase principle = LArTPC potentialities  +   amplification inside Ar vapour

• High density medium.
• Excellent dielectric which allow 

high voltages inside the detector.
• It is cheap and easy to obtain, so 

it is scalable to large detectors.
• High energy resolution. 
• Excellent calorimeters which 

allow for precise 3D 
reconstruction of the track of 
ionising particles traversing the 
liquid.

+  

Key concepts:
 Amplification of the signal inside the LEM 

+ Equal charge sharing in the anode

+

Why LAr?
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Towards large scale DP detector

Sebastien  Murphy ETHZ                                                                                                                                             TPC Symposium 2016 Paris December 5-73

Outcome	of	10	years	of	R&D
40x80cm2: stable operation of large area readouts

Operating with amplification of about 
a factor 20

Max Gain 180 = MIP S/N ~900!

Shuoxing Wu ETHZ

To reach basic GLACIER 4x4m2 CRP (2m readout length) design: 
• reduce capacitance: have long readout strips while keeping minimum noise 
     (upper limit for ~1000 e- ENC noise ~ 350 pF) 
• simplify production: integrate two views on same PCB layer 
• symmetric X-Y charge sharing 

Anode requirements for large area readout

X pitch: 3 mm

Y pitch:  
3 mm

Best solution to optimize capacitance and resolution

ϕ
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dC/dl~150 pF/m

TPC symposium, Paris, 2014
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Dual	phase	readout
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View 0: Signals (run 15937, event 22)

Raw	waveform	no		
software	filtering

real events on 3 liter 
LAr dual phase TPC
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From	R&D	to	large	scale

CERN b. 182

CERN EHN1

Lead, South Dakota

3x1x1 5 ton active - cosmics-size time

ProtoDUNE Dual phase 300 ton active 
-test beam- 

DUNE Dual phase FD 10 kton activeSURF SD

See talk Vyacheslav Galymov

WA105 3x1x1 m3 
DP LAr TPC demonstrator

10x10 cm3 TPC

ProtoDUNE DP 
6x6x6 m3

@CERN BLDG.182

@CERN NORTH AREA

@CERN BLDG.182

@CERN BLDG.182

@ SURF40x80 cm3 
TPC

DUNE DP Far detector
 6x6x6 m3

2007-2014 2014-2017

3 l

250 l

4 t

700 t

10 kt

2016-2019 >2020

12 m drift 

More details in:
 "The DUNE Experiment” 

Jae Yu 

More details in:
 "The protoDUNE 

detectors”
Leigh Whitehead
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1 m drift

3 m

The 3x1x1m3 dual phase prototype

Fully constructed in 2016 
Commissioning and operation in 2017 

More than 500K events collected
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Feedback from performance

December
June November

Summary of the performance in: 

“A 4-tonne demonstrator for large-scale dual-phase liquid argon time projection chamber”  
arXiv: ins-det/1806.03317,  submitted  to  JINST

• First time charge extraction over a 3 m2 
squared area and amplification inside 
50x50 cm2 LEMs. However, the target 
effective gain of 20 was not reached. 
Performance limited due to discharges of the 
extraction grid at -5kV (nominal -6.5 kV).

• Stable liquid surface as required for detector 
operation, good performance of the 
cryogenic system and excellent liquid 
argon purity (compatible with ms electron 
lifetime).

• Stable drift field of 500V/cm.
• Observation of first (in liquid) and second (in 

gas) scintillation light.

https://arxiv.org/abs/1806.03317
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3 m

1 m

1 m

Non-evacuable 
Membrane 
cryostat
1m of passive 
insulation
First GTT design 
cryostat
(same company 
as protoDUNEs)
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Top cap
1.2 m passive insulating 
lid with all feedthroughs 
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The 3x1x1m3 dual phase prototype
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Primary and secondary scintillation in argon

• Clearly visible light from 
primary and secondary 
scintillation.

• Correlation between the 
quantity of light and charge 
detected between matched 
events.

• Comparison between the 
light simulation and data.
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3 m

1 m

1 m

1m

E~500V/cmField cage

Cathode at -56 kV High voltage feedthrough
Tested up to ~300 kV

C. Cantini et al., “First test of a high voltage 
feedthrough for liquid Argon TPCs 
connected to a 300 kV power Supply”, 

JINST 12 P03021 arXiv:1611.02085  

Large detectors require longer drift distances ➜1) higher voltages 

The 3x1x1m3 dual phase prototype: Generate and sustain the voltage
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3 m

1 m

1 m

1m

E~500V/cm

Large detectors require longer drift distances ➜2) Good LAr purity

Cryogenic system designed and 
operated by CERN cryogenic 
group (as in protoDUNEs).

The 3x1x1m3 dual phase prototype: LAr purity
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Select tracks that cross 
the entire 1 m drift. 
Compute the deposited 
charge (dQ/dx) as a 
function of drift.

dQ/ds / e�tdrift/⌧e

✓electron lifetime of few 
milliseconds achieved 
(as required for ktonne 
scale TPCs)

1 m

1 m 1 m

The 3x1x1m3 dual phase prototype: LAr purity
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3 m

1 m

1 m

1m

The 3x1x1m3 dual phase prototype: Charge readout  system

The 3x1 m2  CRP: 
12 50x50 cm2 LEM
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3 m

1 m

1 m

1m

The 3x1x1m3 dual phase prototype: Charge readout system

4 Signal 
Feedthroughs

view 0
(3m strips)

view 1 
(1 m strips)

4 ASICs per board

Amplifiers

Signal

To digitisers

Inside closed volume, accessible during operation. 
Close to anodes, T~110 K
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1 m

3 m

1 m 3 m

1 m

1 m

Raw data no noise filtering

Cosmic track reconstruction
High performance 
imaging in both views 
requires: 
1)Low noise 
2)Amplification: effective 
gain inside the TPC 
3)Equally charge sharing 

Many analysis ongoing->See 
L.Zambelli poster for more details
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Cosmic track reconstruction: 1)Low electronic noise

Noise stable 
at cryogenic 
temperature  
at around 
1550 e- 
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LEM Amplification
multiplication factor of the electrons 

x transparency of its bottom 
electrode

dQ/dsview

Extraction efficiency
fraction of electrons which are 
extracted from the liquid

Collection 
Efficiency
fraction of electrons 
transferred from LEM to 
anode

= Xεextr XGLEM Εcoll

Cosmic track reconstruction: 2)Effective gain

Effective Gain = (<dQ/ds>view0+<dQ/ds>view1)/<dQ/dsexpected>

Deposited charge measured on view 0 (3m strips) 
and view 1 (1 m strips)

fshare X dQ/dsexpectedX( )
50%

Geff, effective gain→goal 20
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26.0 kV/cm - MPV = 4.6 fC/cm

26.5 kV/cm - MPV = 5.0 fC/cm

27.0 kV/cm - MPV = 5.4 fC/cm

27.5 kV/cm - MPV = 6.0 fC/cm

28.0 kV/cm - MPV = 8.4 fC/cm

<dQ/ds>view0

increase of the 
mean and MPV 
of the dQ/dx 
distributions as 
a function of 
the LEM fields.

28 kV/cm of LEM field corresponds to an 
operation of the 3x1x1 TPC at Geff ≈3.

Cosmic track reconstruction: 2)Effective gain

LEM 
Amplification
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We need to reconstruct the same charge in each view

Cosmic track reconstruction: 3)Charge sharing
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Conclusions
• The 3x1x1 m3 has successfully opened the path towards large DP LAr TPCs:


• Extraction efficiency over 3m2 area and LEM amplification with gain has 
been demonstrated on the 50x50 cm2 for the first time. Performance 
limited by the extraction grid maximum voltage.


• First LAr TPC operation in a membrane tank and excellent performance of 
the cryogenic system.


• Stable drift field of 500V/cm over 1m.

• Purity compatible with ms electron lifetime.

• First time use in a LAr TPC of accessible cold front end electronics: they 

have shown to be robust to discharges and offer excellent noise performance.

• More than 500k events recorded. Full infrastructure for data transfer has 

been set up and tested in the 3x1x1.

• Fully engineered versions of many detector components with pre-

production and direct implementation.

• First overview of the complete system integration: set up full chains for 

QA, construction, installation and commissioning

• Large experience has been gained for protoDUNE-DP design, installation 

and commissioning.
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THANK YOU
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Back-up
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Dual phase principle

Key concepts:
 Amplification of the signal inside the LEM + Equally charge sharing in the anode

A. Rubbia 2004  
“In order to allow for long drift (≈ 20 m), we consider charge attenuation along drift and compensate this effect 
with charge amplification near anodes located in gas phase.”
Experiments for CP violation: A Giant liquid argon scintillation, Cerenkov and charge imaging experiment? pp 
321–350 (Preprint hep-ph/0402110) 
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Towards large scale DP detector

literature 
NIM A617 (2010) p188-192 
NIM A641 (2011) p 48-57 
JINST 7 (2012) P08026 
JINST 8 (2013) P04012 
JINST 9 (2014) P03017 
JINST 10 (2015) P03017
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Two dual phase liquid argon detectors

11 m

5 m

Decommissioned

Under construction

WA105 3x1x1 m3
protoDUNE-DP

Common aspects
✓ LEMs and anode: design, purchase, 

cleaning and QA
✓ chimneys, FT and slow control sensors
✓ membrane tank technology
✓ Accessible cold front-end electronics 

and DAQ system
✓ amplification in pure Ar vapour on large 

areas

Same technology→different sizes→different goals
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3x1x1 Timeline

2015

Sebastien  Murphy ETHZ                                                                                                                                             TPC Symposium 2016 Paris December 5-717

The	membrane	cryostat

Insulation:
• 1 meter made from blocks of 30 cm thick 

Polyurethane+plywood.
• 45 temperature sensors to measure temperature 

gradient.
Membrane:
• corrugated steel panels welded together.
• Tightness of welds tested to 1e-9 mbar l/s.

First	membrane	cryostat	built	at	CERN	

Membrane	cryostat	used	for	LNG	transportation		Licensed	by	GTT/France

2015 - Cryostat 
constructed

2016 - Detector 
installation completed

Jan 2017 - 
Commission started

Mar 2017 - Operation 
‘frozen’ due to cryostat 
issues

June 21st 2017 - 
First track seen!

June 12th - 
Recirculation 
started 

June 15th - evidence 
of extraction from 
LAr to GAr
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The 3x1x1 Dual phase LAr TPC
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The cryogenic system

Cryogenic 
system
tasks

Stages

• ProtoDUNE cryogenic system will be designed and operated by 
CERN cryogenic group.

• Successful test of the performance on the 3x1x1 prototype.
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The cryogenic system
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The 3x1m2 Charge readout plane (CRP)
• The CRP is designed to precisely maintaining the interstage 

distances between the grid, LEM and anodes at warm and cold.
• The CRP is modular and independent from the drift cage.
• It is suspended by 3 ropes coupled to motors on top-cap with a 

precision of 100 um over 4 cm. 
• It allows to remotely adjust the liquid argon level in between the 

LEMs and the extraction grid.
• It is surrounded by 8 capacitive level meters to readout the LAr 

level.

50 cm

50 cm

CRP for the 3x1x1

tested and validated 
for protoDUNE-DP
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LEM-anode sandwich

LEMs

✓ PCB CNC drilled with o(150) holes 
per cm2. 1 mm thick.

✓ 500 um hole diameter 800 um 
pitch.

Anodes

▪ 4-layer 3.4 mm thick PCB

▪ Rather standard to manufacture

▪ electrical continuity tested by company

▪ Minimal QC needed on our side.

LEM-anode sandwich
dC/dl 140 pF/m. about 450-500 
pF before preamp on 3m 
readout. ENC of ~ 1500 
electrons at 110 K

JINST 8 (2013) P04012   JINST 9 (2014) P03017    JINST 10 (2015) P03017

design has matured from 
many year of R&D on small 
prototypes and from 
dedicated tests in cryogenic 
environment of a 50x50.
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LEM-anode sandwich
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Charge readout

view 0 ( 3m 
strips)

view 1 ( 1 m strips)

signal

to digitisers

amplifiers inside closed volume. 
Close to anodes, ~110 K

amplifiers accessible during 
operations

amplifiers

4 ASICs per board
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3 m

1 m

1 m

1m

The 3x1x1m3 dual phase prototype: Charge readout system

4 Signal Feedthroughs
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Summary of HV configurations during data taking

Collection 
field

Amplification 
field

Extraction 
fieldExt grid

All measurements in mm

20

5
5

FFS

LEMup

LEMdown

Anode

21

cathode

980

-56 kV

-7.6 kV

-6.5 kV
-4.3 kV
-1.0 kV

0 kV

shielding
PMTs

Nominal values

Drift field 500 V/cm

> 2 kV/cm

33 kV/cm

5 kV/cm 1-5  kV/cm

24-31 kV/cm

0.6-2.5  kV/cm

180-700 V/cm

Values reached

8

During operations we have always stayed below 
the nominal operating voltages as the extraction 
grid trips before reaching its nominal value. 

Voltage Electric fields
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First look at data: Uniformity

• Drift field: 500V/cm
• Extraction field in liquid: 

1.9 kV/cm
• Amplification field: 28 

kV/cm (except the 
corners at 24 kV/cm)

• Induction field: 1.5 kV/
cm
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Through going muon

• No signal of 
attenuation in 1 m 
drift.

• S/N ratio > 10.
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LAr stability
an important point on requirement of level position:  

• for a given ΔVLEM-grid  the extraction field depends on the 
position of the LAr level. 

• At sufficiently large ΔVLEM-grid  (>~2.5 kV) the extraction 
efficiency is near maximal and therefore almost independent 
of the liquid level. 

• The boundary conditions are that the liquid should not 
touch the LEMs and the grid stays immersed.
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Effective gain factorisation
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