

ICHEP2018 SEOUL XXXIX INTERNATIONAL CONFERENCE ON high Covers

Performance of the 3x1x1m³ dual phase LArTPC L.Molina Bueno

PHYSICS

Motivation

Next generation of long baseline experiments aiming for CP discovery.

High resolution imaging is the key to efficient background rejection and good particle identification.

Dual phase principle = LArTPC potentialities + amplification inside Ar vapour

Why LAr?

- High density medium.
- Excellent dielectric which allow high voltages inside the detector.
- It is cheap and easy to obtain, so it is scalable to large detectors.
- High energy resolution.
- Excellent calorimeters which allow for precise 3D reconstruction of the track of ionising particles traversing the liquid.

Key concepts: Amplification of the signal inside the LEM + Equal charge sharing in the anode

Towards large scale DP detector

The 3x1x1m³ dual phase prototype

1 m drift

Fully constructed in 2016 Commissioning and operation in 2017 More than 500K events collected

Feedback from performance

Summary of the performance in:

"A 4-tonne demonstrator for large-scale dual-phase liquid argon time projection chamber" arXiv: ins-det/1806.03317, submitted to JINST

- First time charge extraction over a 3 m² squared area and amplification inside 50x50 cm² LEMs. However, the target effective gain of 20 was not reached.
 Performance limited due to discharges of the extraction grid at -5kV (nominal -6.5 kV).
- Stable liquid surface as required for detector operation, good performance of the cryogenic system and excellent liquid argon purity (compatible with ms electron lifetime).
- Stable drift field of 500V/cm.
- Observation of first (in liquid) and second (in gas) scintillation light.

The 3x1x1m³ dual phase prototype

Primary and secondary scintillation in argon

The 3x1x1m³ dual phase prototype: Generate and sustain the voltage

The 3x1x1m³ dual phase prototype: LAr purity

The 3x1x1m³ dual phase prototype: LAr purity

Select tracks that cross the entire 1 m drift. Compute the **deposited charge (dQ/dx) as a function of drift.**

$$\mathrm{d}Q/\mathrm{d}s \propto e^{-t_{drift}/\tau_e}$$

 ✓ electron lifetime of few milliseconds achieved (as required for ktonne scale TPCs)

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

The 3x1x1m³ dual phase prototype: Charge readout system

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

The 3x1x1m³ dual phase prototype: Charge readout system

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Cosmic track reconstruction

High performance imaging in both views requires:

 Low noise
Amplification: effective gain inside the TPC
Equally charge sharing

Many analysis ongoing->See L.Zambelli poster for more details

Cosmic track reconstruction: 1)Low electronic noise

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Cosmic track reconstruction: 2)Effective gain

Cosmic track reconstruction: 2)Effective gain

Cosmic track reconstruction: 3)Charge sharing

Conclusions

- The 3x1x1 m³ has successfully opened the path towards large DP LAr TPCs:
 - Extraction efficiency over 3m² area and LEM amplification with gain has been demonstrated on the 50x50 cm² for the first time. Performance limited by the extraction grid maximum voltage.
 - First LAr TPC operation in a membrane tank and excellent performance of the cryogenic system.
 - Stable drift field of 500V/cm over 1m.
 - Purity compatible with ms electron lifetime.
 - First time use in a LAr TPC of accessible cold front end electronics: they have shown to be robust to discharges and offer excellent noise performance.
 - More than 500k events recorded. Full infrastructure for data transfer has been set up and tested in the 3x1x1.
 - Fully engineered versions of many detector components with preproduction and direct implementation.
 - First overview of the complete system integration: set up full chains for QA, construction, installation and commissioning
 - Large experience has been gained for protoDUNE-DP design, installation and commissioning.

THANK YOU

Back-up

Dual phase principle

A. Rubbia 2004

"In order to allow for long drift (≈ 20 m), we consider charge attenuation along drift and compensate this effect with charge amplification near anodes located in gas phase."

Experiments for CP violation: A Giant liquid argon scintillation, Cerenkov and charge imaging experiment? pp 321–350 (Preprint hep-ph/0402110)

Towards large scale DP detector

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Two dual phase liquid argon detectors

Same technology→different sizes→different goals

Common aspects

- LEMs and anode: design, purchase, cleaning and QA
- ✓ chimneys, FT and slow control sensors
- membrane tank technology
- Accessible cold front-end electronics and DAQ system
- amplification in pure Ar vapour on large areas

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

The 3x1x1 Dual phase LAr TPC

The cryogenic system

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

The 3x1m² Charge readout plane (CRP)

- The CRP is designed to precisely maintaining the interstage distances between the grid, LEM and anodes at warm and cold.
- The CRP is modular and independent from the drift cage.
- It is suspended by 3 ropes coupled to motors on top-cap with a precision of <u>100 um over 4 cm</u>.
- It allows to remotely adjust the liquid argon level in between the LEMs and the extraction grid.
- It is surrounded by 8 capacitive level meters to readout the LAr level.

LEM-anode sandwich

design has matured from many year of R&D on small prototypes and from dedicated tests in cryogenic environment of a 50x50.

LEMs

- ✓ PCB CNC drilled with o(150) holes per cm². 1 mm thick.
- ✓ 500 um hole diameter 800 um pitch.

Minimal QC needed on our side.

JINST 8 (2013) P04012 JINST 9 (2014) P03017 JINST 10 (2015) P03017

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

LEM-anode sandwich

EIGENTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Charge readout

Eidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

The 3x1x1m³ dual phase prototype: Charge readout system

Summary of HV configurations during data taking

Through going muon

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

LAr stability

an important point on requirement of level position:

- for a given $\Delta V_{\text{LEM-grid}}$ the extraction *field* depends on the position of the LAr level.
- At sufficiently large ΔV_{LEM-grid} (>~2.5 kV) the extraction *efficiency* is near maximal and therefore almost independent of the liquid level.
- The boundary conditions are that the liquid should not touch the LEMs and the grid stays immersed.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Effective gain factorisation

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich