Measurement of $t\bar{t}H$ (bb, leptonic) with Multivariate Analysis Techniques at CMS

Marcel Rieger on behalf of the CMS Collaboration

II. Physics Institute A

Analysis Challenges

1. **$t\bar{t}H$ is very rare** compared to $t\bar{t}$ (main background): $\sigma_{t\bar{t}H} = 0.5071 \text{ pb}$ vs. $\sigma_{t\bar{t}} = 831.76 \text{ pb}$ ($\sqrt{s} = 13 \text{ TeV}, m_{H} = 125 \text{ GeV}$)

2. **Irreducible backgrounds**: (e.g.) $t\bar{t}b\bar{b}$ has same final state and event topology

3. **Uncertain background modeling**: $\Delta \sigma_{t\bar{t}b\bar{b}} \sim 50\%$ → $\Delta \sigma_{t\bar{t}b\bar{t}} = 7 \times \sigma_{t\bar{t}H}$

→ Challenging analyses require sophisticated methods

Event Categorization with Deep Neural Networks

Precision of categorization scheme using jets & b-tags degrades with high b-tag multiplicity

→ Use DNNs to categorize using jets & most probable process

- Multi-class approach generates enriched categories for signal and each background
- Backgrounds constrained separately in fitting procedure
- Improves extraction of signal strength parameter

Results

$t\bar{t}H$ (bb) analysis with MVA techniques has significant impact on $t\bar{t}H$ observation

Discriminants

Discriminants selected by highest expected significance

Analysis Flow

Events

- Single lepton
- Dilepton

Categorization

- Combinations of all channels yielded an excess of events above the expected background in agreement with SM predictions

Measurement

- $L = 3.59 \text{ fb}$

Motivation

Analysis Strategy

Results

Event Categorization with Deep Neural Networks

Precision of categorization scheme using jets & b-tags degrades with high b-tag multiplicity

→ Use DNNs to categorize using jets & most probable process

- Multi-class approach generates enriched categories for signal and each background
- Backgrounds constrained separately in fitting procedure
- Improves extraction of signal strength parameter

Motivation

Analysis Strategy

Results

Event Categorization with Deep Neural Networks

Precision of categorization scheme using jets & b-tags degrades with high b-tag multiplicity

→ Use DNNs to categorize using jets & most probable process

- Multi-class approach generates enriched categories for signal and each background
- Backgrounds constrained separately in fitting procedure
- Improves extraction of signal strength parameter

Motivation

Analysis Strategy

Results

Event Categorization with Deep Neural Networks

Precision of categorization scheme using jets & b-tags degrades with high b-tag multiplicity

→ Use DNNs to categorize using jets & most probable process

- Multi-class approach generates enriched categories for signal and each background
- Backgrounds constrained separately in fitting procedure
- Improves extraction of signal strength parameter

Motivation

Analysis Strategy

Results

Event Categorization with Deep Neural Networks

Precision of categorization scheme using jets & b-tags degrades with high b-tag multiplicity

→ Use DNNs to categorize using jets & most probable process

- Multi-class approach generates enriched categories for signal and each background
- Backgrounds constrained separately in fitting procedure
- Improves extraction of signal strength parameter

Motivation

Analysis Strategy

Results

Event Categorization with Deep Neural Networks

Precision of categorization scheme using jets & b-tags degrades with high b-tag multiplicity

→ Use DNNs to categorize using jets & most probable process

- Multi-class approach generates enriched categories for signal and each background
- Backgrounds constrained separately in fitting procedure
- Improves extraction of signal strength parameter