# Measurement of ttH (bb, leptonic) with Multivariate Analysis Techniques at CMS

Marcel Rieger on behalf of the CMS Collaboration



### ttH in the Standard Model

Direct measurement of *ttH* cross section offers unique access to Yukawa coupling to decisively probe the Standard Model

$$\mathcal{L}_{\text{Yukawa}} = -\sum_{f} \lambda_f \frac{\nu}{\sqrt{2}} \,\bar{\psi}_f \psi_f + \lambda_f \frac{1}{\sqrt{2}} \bar{\psi}_f \psi_f H$$





## Analysis Challenges

- 1.  $t\bar{t}H$  is **very rare** compared to  $t\bar{t}$  (main background):  $\sigma_{t\bar{t}H} = 0.5071 \text{ pb}$  vs.  $\sigma_{t\bar{t}} = 831.76 \text{ pb}$  ( $\sqrt{s} = 13 \text{ TeV, m}_{H} = 125 \text{ GeV}$ )
- 2. **Irreducible** backgrounds: (e.g.)  $t\bar{t}b\bar{b}$  has same final state and event topology
- 3. Uncertain background modeling:



→ Challenging analyses require sophisticated methods

## Analysis Flow



## Event Categorization with Deep Neural Networks

Precision of categorization scheme using jets & b-tags degrades with high b-tag multiplicity

→ Use **DNNs** to categorize using jets & most probable process



Multi-class approach generates enriched categories for signal and each background

- → Backgrounds constrained separately in fitting procedure
  - → Improves extraction of signal strength parameter

#### Discriminants

Discriminants selected by highest expected significance



#### Results

| Channel       | 95% CL upper limit |                        | Best-fit $\mu$                                                                        |
|---------------|--------------------|------------------------|---------------------------------------------------------------------------------------|
|               | observed           | expected               | $\pm tot (\pm stat \pm syst)$                                                         |
| Single-lepton | 1.75               | $1.03^{+0.44}_{-0.29}$ | $0.84^{+0.52}_{-0.50}$ $\begin{pmatrix} +0.27 & +0.44 \\ -0.26 & -0.43 \end{pmatrix}$ |
| Dilepton      | 2.34               | $2.48^{+1.17}_{-0.76}$ | $-0.24^{+1.21}_{-1.12}\ \left( ^{+0.63}_{-0.60}\ ^{+1.04}_{-0.95}\right)$             |
| Combined      | 1.51               | $0.92^{+0.39}_{-0.26}$ | $0.72^{+0.45}_{-0.45}$ $\begin{pmatrix} +0.24 & +0.38 \\ -0.24 & -0.38 \end{pmatrix}$ |

ttH (bb) analysis with MVA techniques has significant impact on ttH observation



Observed (expected) significance: **1.6 (2.2)** σ

arXiv:1804.03682, CMS-HIG-17-026



Observed (expected) significance: **5.2 (4.2)** σ

arXiv:1804.02610, CMS-HIG-17-035