

Forward-backward asymmetry in $p\bar{p} \rightarrow t\bar{t}$ events at the Tevatron

ICHEP 2018

Bob Hirosky UNIVERSITY of VIRGINIA

for the CDF and DZero Collaborations

Producing tops @ Tevatron

Run II data (2001-2011): pp at $\sqrt{s} = 1.96 \text{ TeV}$

- ~12 fb⁻¹ delivered per experiment
- ~10 fb⁻¹ for analysis
- Largest, highest energy pp data set

- At the Tevatron top mostly produced in pairs via $q\overline{q}$ annihilation
- → a unique data set for the top quark studies
- LHC: 80-90% gluon fusion

Cross-section (NNLO +NNLL QCD for m_t=172.5 GeV):

$$\sigma_{t\bar{t}} = 7.35^{+0.23}_{-0.27} \text{ pb}$$

Differential distributions of heavy flavor produced in lowest order processes are symmetric for quark and antiquark final states

$$q + \bar{q} \to Q + \bar{Q}$$
$$g + g \to Q + \bar{Q}$$

Negative asymmetry

Interference with diagrams having real or virtual gluon emission have sizeable effect on Q, Q production

=> production charge asymmetry

Differential distributions of heavy flavor produced in lowest order processes are symmetric for quark and antiquark final states

$$q + \bar{q} \to Q + \bar{Q}$$
$$g + g \to Q + \bar{Q}$$

Additional contributions to asymmetry in production of heavy quarks through flavor excitation:

 $g + q \rightarrow Q + \bar{Q} + q$

forward-backward asymmetry in pp collisions

$$\Delta y = y_t - y_{\bar{t}}$$

$$A_{FB}^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

SM predicts asymmetry in tt production at NLO from events with qq (gq) initial states (gg is symmetric)

SM asymmetry is small, but measurable: ~9.5% (NNLO)

Czakon, Fiedler and Mitov, PRL **115**, 5, 052001 (2015)

- Sensitive test for new physics models
- Could be enhanced by NP processes eg W'/Z', axigluon

forward-backward asymmetry in pp collisions

$$\Delta y = y_t - y_{\bar{t}}$$

$$A_{FB}^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

Comparison with pp collisions

Symmetric initial state

$$\Delta |y| = |y_t| - |y_{\bar{t}}|$$

$$A_C = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}$$

- (charge asym. $\sim 1\%$)
- LHC t
- Asymmetric PDF for antiquarks (sea) and quarks (mostly valence)
- Observable effect => broadening distribution of top quarks

Tevatron and LHC measurements complementary for testing new physics models

Tevatron A_{FR} history

Measurements:

$$A_{FB}^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$
$$\Delta y = y_t - y_{\bar{t}}$$

Much interest in past years:

• *l*+jets analyses showed departure from NLO SM expectations

More recent publications:

- NNLO QCD+ NLO EW calculation gives larger effect: ~9.5±0.5%
- More data, analyses improved:
 - Dilepton channels added 2015 - 2016
 - Latest experimental results are lower
 - More compatible with SM

$t\bar{t}$ forward-backward asymmetry

Tevatron A_{FR} history

Measurements:

$$A_{FB}^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$
$$\Delta y = y_t - y_{\bar{t}}$$

Much interest in past years:

• *l*+jets analyses showed departure from NLO SM expectations

More recent publications:

- NNLO QCD+ NLO EW calculation gives larger effect: ~9.5±0.5%
- More data, analyses improved:
 - Dilepton channels added 2015 - 2016
 - Latest experimental results are lower
 - More compatible with SM

Understanding of asymmetry has evolved on multiple fronts:

- Improvements to theory calculations
- Data collection

- Combined Tevatron measurements and differential distributions
 - All combinations calculated using **BLUE** method
 - Account for correlations in analysis methods and inputs

Inclusive asymmetries

$$A_{FB}^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

$$\Delta y = y_t - y_{\bar{t}}$$

tt asymmetry vs NNLO prediction: **1.3 SD**

$$A_{FB}^{\ell} = \frac{N_{\ell}(q \times \eta > 0) - N_{\ell}(q \times \eta < 0)}{N_{\ell}(q \times \eta > 0) + N_{\ell}(q \times \eta < 0)}$$

Lepton qη asymmetry vs NLO prediction: **1.6 SD**

$$\Delta \eta = \eta_{\ell^{+}} - \eta_{\ell^{-}}$$

$$A_{FB}^{\ell\ell} = \frac{N(\Delta \eta > 0) - N(\Delta \eta < 0)}{N(\Delta \eta > 0) + N(\Delta \eta < 0)}$$

Lepton $\Delta \eta$ asymmetry vs NLO prediction: **1.3 SD**

Note: the three asymmetry measurements are correlated!

Inclusive asymmetries

$$A_{FB}^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

$$\Delta y = y_t - y_{\bar{t}}$$

tt asymmetry vs NNLO prediction: **1.3 SD**

$$A_{FB}^{\ell} = \frac{N_{\ell}(q \times \eta > 0) - N_{\ell}(q \times \eta < 0)}{N_{\ell}(q \times \eta > 0) + N_{\ell}(q \times \eta < 0)}$$

Lepton qη asymmetry vs NLO prediction: **1.6 SD**

$$\Delta \eta = \eta_{\ell^+} - \eta_{\ell^-}$$

$$A_{FB}^{\ell\ell} = \frac{N(\Delta \eta > 0) - N(\Delta \eta < 0)}{N(\Delta \eta > 0) + N(\Delta \eta < 0)}$$

Lepton $\Delta \eta$ asymmetry vs NLO prediction: **1.3 SD**

Results compatible with SM

Differential measure of A_{fb}^{tt}

Combined A_{FB}^{tt} as a function of $m_{t\bar{t}}$ and $\Delta y_{t\bar{t}}$

- Include bin-to-bin correlations due to unfolding
- Compare to NNLO QCD + NLO EW calculation

Mass $(m_{r\bar{r}} [GeV])$ dependence combination

- Fit combination with $\beta+\alpha$ x (m_{tt}-450 (GeV))
 - $\alpha = (9.71 \pm 3.28) \times 10^{-4} / \text{GeV}$,
 - $\beta = 0.131 \pm 0.034$
- NNLO QCD + NLO EW prediction
 - $\alpha = (5.11^{+0.42}_{-0.64}) \times 10^{-4} / \text{GeV},$
 - $\beta = 0.087^{+0.005}_{-0.0}$
- Agreement within 1.3 s.d.

- Fit individual measurements with a single slope parameter α
 - α =(0.187± 0.038)
- NNLO QCD + NLO EW prediction
 - $\alpha = (0.129^{+0.006}_{-0.012})$
- Agreement within 1.5 s.d.

Differential measure of A_{fb}^{tt}

Correlation of first and second ***** D0 ℓ + jets, 9.7 fb⁻¹ **CDF** ℓ + jets, 9.4 fb⁻¹ bins in m_r 0.15 0.20 0.25 0.30 0.35

 $A_{
m FB}^{tar{t}} \ \left(m_{tar{t}} < 450 \ {
m GeV}/c^2
ight) \ 0.05 \ 0.00 \ 0.05 \ 0.10$

0.10

0.05

★ Tevatron combination, $< 9.7 \text{ fb}^{-1}$

♦ NNLO QCD + NLO EW [Czakon et al.]

 $A_{\rm FR}^{t\bar{t}} \ (450 < m_{t\bar{t}} < 550 \ {\rm GeV}/c^2)$

A_{FB}^{ℓ} and A_{FB}^{ℓ}

Comparison with NLO QCD+ NLO EW calculation

Summary

Twenty (plus) years after discovery, Tevatron data still providing new insights into top quark physics

Precise measurements, complementary to LHC's pp initial state (production asym., transverse polarization, s-chan single top, m_{top}, ...)

Final measurements of the top-quark production asymmetry at the Tevatron and more refined theory calculations are in better agreement than was observed in earlier studies ($\sim 1.5\sigma$)

A_{FR}^{tt} in agreement with Standard Model

Additional slides

Top pair production signatures

Well known decay signatures

Effective event ID using:

isolated high p_T lepton(s)+ missing p_T or energetic jets

Typical event selections

Lepton + Jets

- Trigger: single lepton and lepton+jets
- Isolated electron or muon
 - $p_T > 20 \text{ GeV}$
 - $|\eta(\mu)| < 2.0, |\eta(e)| < 1.1$
- At least 3 jets pT>20 GeV
- Missing transverse momentum > 20 GeV
- Additional selections:
 - Use of the b-jet identification
 - Event kinematic selections

Dileptons

- Trigger: dileptons
- Two isolated leptons (electrons and/or muons)
 - $p_T > 15 \text{ GeV}$
 - $|\eta(\mu)| < 2.0$
 - $|\eta(e)| < 1.1$ and $1.5 < |\eta(e)| < 2.5$
- At least 2 jets pT>20 GeV
- Missing transverse momentum > 20 GeV
- Additional selections:
 - Use of the b-jet identification
 - Event kinematic selections

Signal and Background

tt simulation: ALPGEN + PYTHIA (parton showering + hadronization)

- Systematic uncertainty studies: MC@NLO+HERWIG, different PYTHIA versions
- Acceptance 10-20% (4 6 reconstructed objects in the final state)

Lepton + Jets

Dominant backgrounds

Dileptons

- W+jets (Wbbj, Wccj, Wjjj)
- Multijet events with misidentified leptons
- Dibosons (WW, WZ, ZZ) +jets

- Z → μμ, ee, ττ + jets (D-Y)
- Dibosons (WW, WZ, ZZ) + jets
- W+jets and multijet events with misidentified leptons

top and tbar show a forward-backward asymmetry in pp collisions

SM asymmetry is small, ~9.5% (NNLO)

Czakon, Fiedler and Mitov. PRL **115**, 5, 052001 (2015)

=> sensitive to test new physics contributions

- NLO $2\rightarrow 2$ (interference between Born and box diagrams), LO $2\rightarrow 3$: expect (5—10)% asymmetry (higher order corrections are small)
- NLO $2\rightarrow3$ (ISR/FSR interference): has negative asymmetry and reduces expected asymmetry ⇒ strong dependence from phase space region
- gg initiated processes are symmetric

Inclusive asymmetries @ Tevatron

- Use BLUE to combine measurements
- Standardize and combine systematic uncertainties.
 - All results are limited by the statistical uncertainty
 - Main correlation between experiments from signal models ~ 10% total correlation
- Consistency:
 - tt asymmetry vs NNLO prediction: **1.3 SD**
 - Lepton qη asymmetry vs NLO prediction:
 1.6 SD
 - Lepton Δη asymmetry vs NLO prediction:
 1.3 SD

Note: the three asymmetry measurements are correlated!

Examples of A_{FB} measures

tt asymmetry in ℓ+jets channel

Phys. Rev. D 90, 072011 (2014)

Leptonic asymmetry in ℓ +jets chan.

Phys. Rev. D 90, 072001 (2014)

Phys. Rev. D 92, 052007 (2015)

A_{FB}^{ℓ} vs $A_{FB}^{\ell\ell}$

Phys. Rev. D 88, 112002 (2013)

