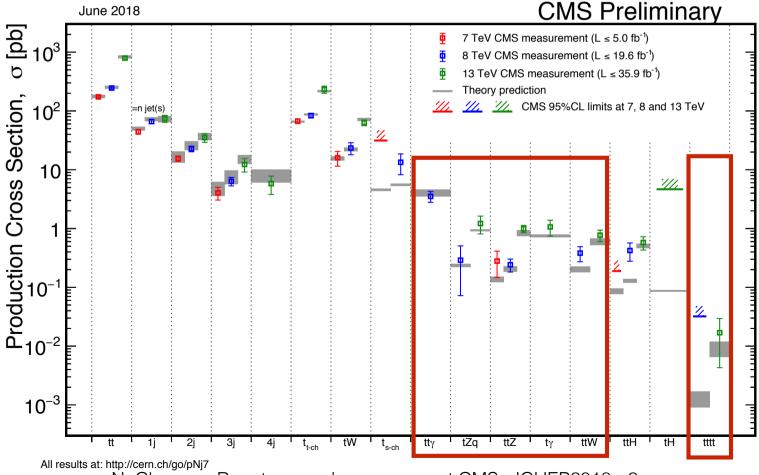


Rare processes with top quarks at CMS

ICHEP - 05/07/2018, Seoul (South Korea)

Nicolas Chanon - IPNL, CNRS/IN2P3 (France) for the CMS Collaboration

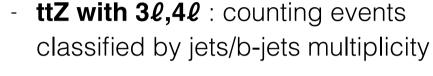


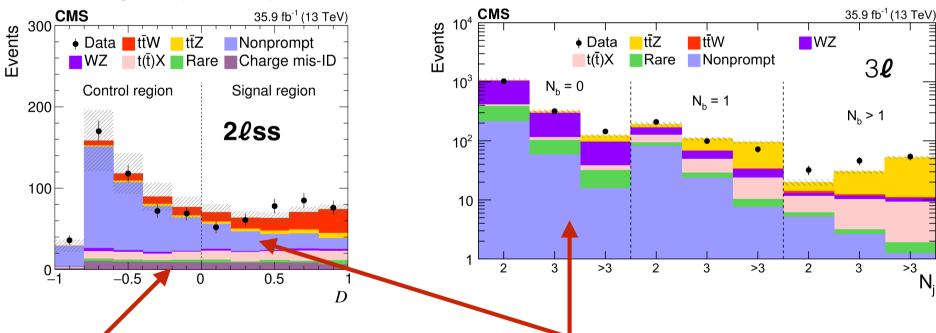
Introduction

Processes with top quarks produced at low rate in the SM

- tt + W/Z (13 TeV), tt + γ (8 TeV)
- **t + Z** (13 TeV), **t + γ** (13 TeV, NEW)
- Four top quarks (13 TeV)
- Rich phenomenology of anomalous couplings of top and vector bosons (top-boson, FCNC, triple gauge coupling...): see talk from A. Grohsjean

Latests results


N. Chanon - Rare top quark processes at CMS - ICHEP2018 - 2

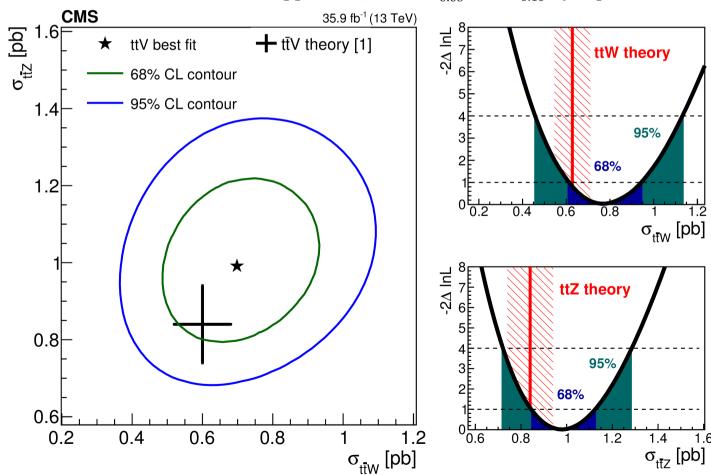

tī+W/Z

arxiv:1711.02547, submitted to JHEP

- A test of top quark vector boson coupling,
- Irreducible background to ttH multi-lepton searches
- Measure ttW with 20ss events:
 use kinematics in 3 BDT categories
- Use charge asymmetry

ellele

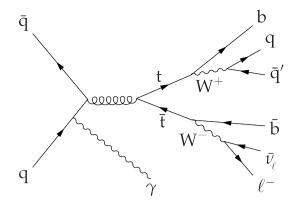
- **Charge mismeasurement** (ee channel only): estimated from DY events in data (20% uncertainty)
- Non-prompt lepton background: measured relaxing isolation in a QCD data sample (30% uncertainty)


tt+W/Z

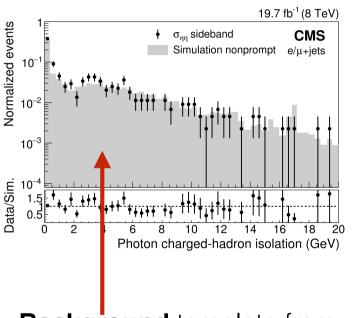
arxiv:1711.02547, submitted to JHEP

- Main systematics: lepton identification / trigger selections, non-prompt background
- **ttW** with $2\ell ss$: **4.5** σ (5.3 σ) **observed** (expected)
- **ttZ** with 3ℓ/4ℓ: **>5σ**

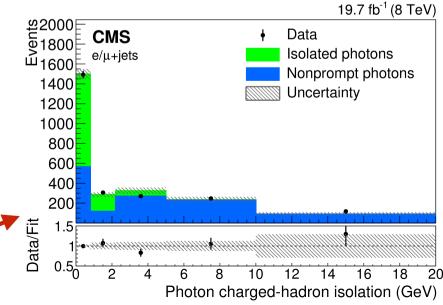
$$\sigma(pp \to t\bar{t}W) = 0.77^{+0.12}_{-0.11} \text{ (stat)}^{+0.13}_{-0.12} \text{ (syst) pb,}$$


$$\sigma(pp \to t\bar{t}Z) = 0.99^{+0.09}_{-0.08} \text{ (stat)}^{+0.12}_{-0.10} \text{ (syst) pb.}$$

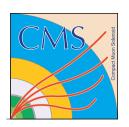
N. Chanon - Rare top quark processes at CMS - ICHEP2018 - 4



tt+γ JHEP 10 (2017) 006


Target semi-leptonic final states

- Measure tt+γ over tt ratio
- Normalize the number of ttbar events (including tt+γ) with a fit of the 3-jet mass



Background template from cluster shape sideband

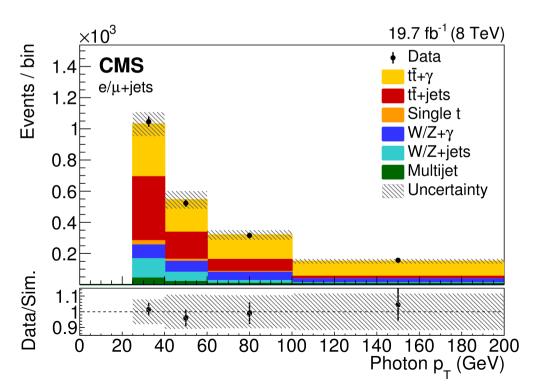
- Increase purity with **photon shower shape** cut
- Extract the signal with a fit of charged-hadron isolation
- **Signal** template from **random cone** method (same η , random Φ)

Measure prompt photon purity >50%

tt+γ JHEP 10 (2017) 006

- Normalize relative tty, Vy and fake photon contributions with a likelihood exp(-χ2):

$$\chi^{2}(SF_{t\bar{t}+\gamma},SF_{V+\gamma},SF_{jet\to\gamma}) = \frac{(\pi_{e\gamma}^{data} - \pi_{e\gamma}^{MC})^{2}}{\sigma_{\pi_{e\gamma}}^{2}} + \frac{(\pi_{t\bar{t}}^{data} - \pi_{t\bar{t}}^{MC})^{2}}{\sigma_{\pi_{t\bar{t}}}^{2}} + \frac{(N^{data} - N^{MC})^{2}}{\sigma_{N}^{2}}$$

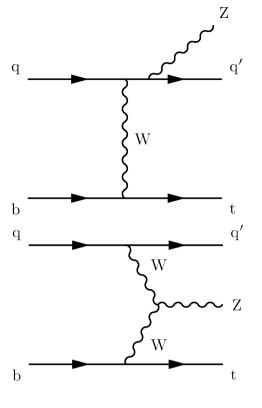

Main systematic uncertainties:

Source	Uncertainty (%)
Statistical likelihood fit	15.5
Top quark mass	7.9
JES	6.9
Fact. and renorm. scale	6.7

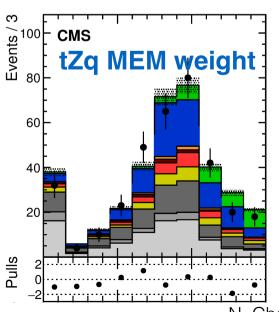
Fiducial volume at generator level as close as possible to reconstructed level, to minimize unfolding effects

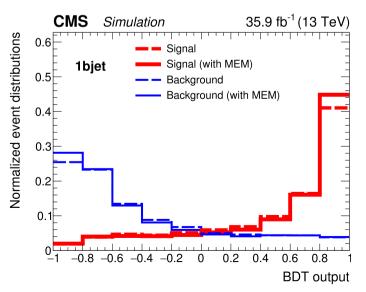
Results:

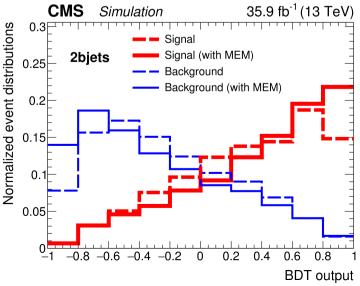
Category	R	$\sigma_{t\bar{t}+\gamma}^{fid}$ (fb)	$\sigma_{ar{t}+\gamma}\mathcal{B}(fb)$
e+jets		138 ± 45	582 ± 187
μ+jets	$(4.7 \pm 1.3) \times 10^{-4}$		453 ± 124
Combination	$(5.2 \pm 1.1) \times 10^{-4}$	127 ± 27	515 ± 108
Theory	_	_	$592 \pm 71 \text{ (scales)} \pm 30 \text{ (PDFs)}$


Single top + Z (tZq)

Phys. Lett. B 779 (2018) 358


Analysis performed in 3ℓ final state (e or μ)


- Makes use of the **forward jet** in tZq to discriminate signal from background
- Build **BDT discriminants** using kinematic information
- Include MEM weights and MEM kinematic fit as input to the BDT


$$w_{i,\alpha}(\Phi') = \frac{1}{\sigma_{\alpha}} \int d\Phi_{\alpha} \cdot \delta^{4} \left(p_{1}^{\mu} + p_{2}^{\mu} - \sum_{k \geq 2} p_{k}^{\mu} \right) \cdot \frac{f(x_{1}, \mu_{F}) f(x_{2}, \mu_{F})}{x_{1} x_{2} s} \cdot \left| \mathcal{M}_{\alpha}(p_{k}^{\mu}) \right|^{2} \cdot W(\Phi' | \Phi_{\alpha})$$

MEM improves the analysis significance by 20%

N. Chanon - Rare top quark processes at CMS - ICHEP2018 - 7

Single top + Z (tZq)

Phys. Lett. B 779 (2018) 358

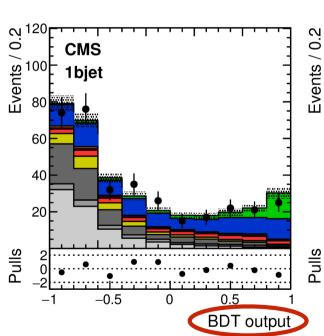
Signal extraction: simultaneous fit in 3 categories

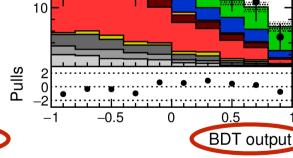
<u>1 b-jet + 1-2 non-b-jet :</u> enriched in **tZq** signal

- Constrains tZq

2 b-jets + ≥0 non-bjets: enriched in ttZ

Constrains ttZand tZq


CMS


30**├ 2bjets**

0 b-jets + ≥1 non-b-jets:
enriched in WZ and fakes

- Measure fakes
- Constrains WZ

35.9 fb⁻¹ (13 TeV) GeV **CMS** Data tZq الا ₆₀₀ 0bjet **NPL** Events / tWZ ttH+ttW tŧZ ZZ WZ+c WZ+b 200 WZ+light Pulls m^W_T [GeV

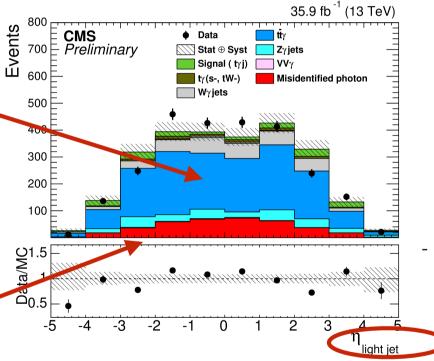
Observation 3.7σ (3.2σ expected)

$$\sigma(pp^- \to tZq \to Wb\ell^+\ell^- q) = 123^{+33}_{-31} (stat)^{+29}_{-23} (syst) \, fb, \quad \text{for } m_{\ell^+\ell^-} > 30 \, \text{GeV}$$

$$\sigma^{\text{SM}}(t\ell^+\ell^- q) = 94.2^{+1.9}_{-1.8} (scale) \pm 2.5 \, (\text{PDF}) \, fb$$

N. Chanon - Rare top quark processes at CMS - ICHEP2018 - 8

Single top + γ (t γ q)


CMS PAS TOP-17-016 (June 2018)

NEW

Target **muonic** top quark decay

- At least two jets, with only one tagged as b-jet

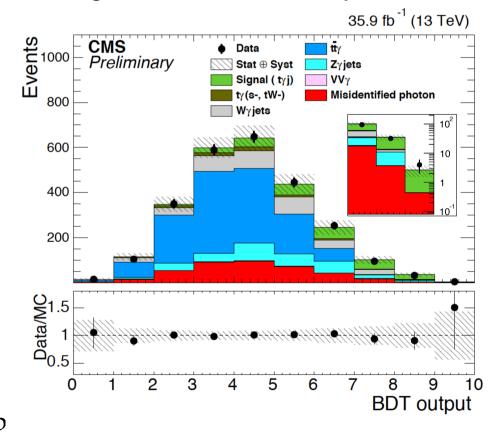
Uses the **forward jet** to increase
discrimination

Estimate non-prompt photon background with a fake ratio method

- relax photon requirement,
- measure probability to mis-identify a non-prompt as a prompt photon

Single top $+ \gamma$ (tyq)

CMS PAS TOP-17-016 (June 2018)

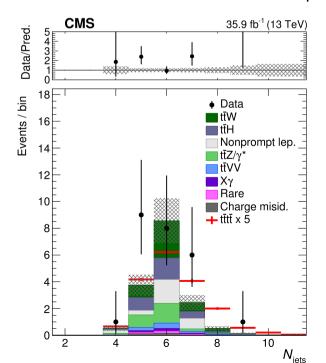

NEW

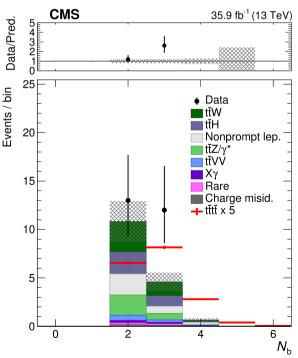
- Build a **BDT** discriminant using kinematics
 - Most important variable forward jet η
 - Template for tt+y obtained from data control region with additional b-jet
 - Non-prompt from fake ratio method
- Simultaneous fit of tγq and tt+γ regions

First evidence for tγq:
Observation 4.4σ (3.0σ expected)

Dominated by systematics: jet energy scale, b-tagging, tγq modeling

 $\mathcal{B}(t \to \mu \nu b) \sigma(t \gamma j) = 115 \pm 17 (stat)^{+33}_{-27} (syst) \text{ fb}$ The SM predicted cross section is $81 \pm 4 \text{ fb}$

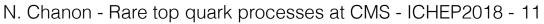

Four top quarks (tttt)


Eur. Phys. J. C 78 (2018) 140

Analysis in **2ℓss and ≥3ℓ final state**

- Take advantage of large multiplicity:
 - Require HT>300 GeV
 - Categorize in the number of jets and b-jets
- Construct ttZ and ttW control regions
- Charge misidentification and non-prompt leptons: same techniques as in ttW/Z analysis
- Main systematics: lepton identification, QCD scale and pdf, ISR/FSR

N_ℓ	$N_{\rm b}$	$N_{ m jets}$	Region
2	2	≤ 5	CRW
		6	SR1
		7	SR2
		≥8	SR3
	3	5, 6	SR4
		<u>≥</u> 7	SR5
	\geq 4	≥5	SR6
<u>≥</u> 3	2	≥5	SR7
	≥3	\geq 4	SR8
Inverted Z veto			CRZ

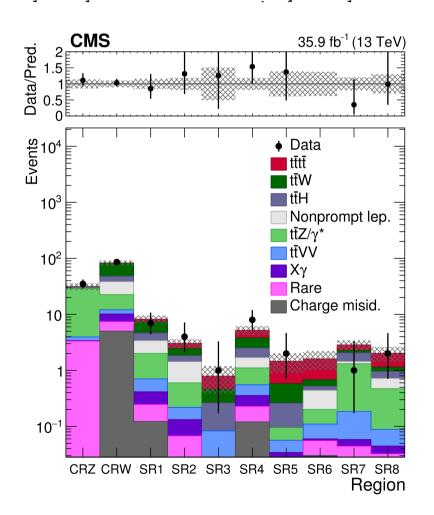


 g_{\sim} 0000000

g \sim \sim \sim \sim \sim \sim

gaeeeee

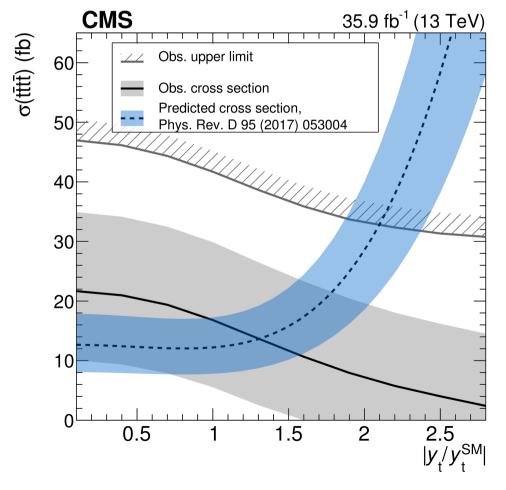
gallele



Four top quarks (tttt)

Eur. Phys. J. C 78 (2018) 140

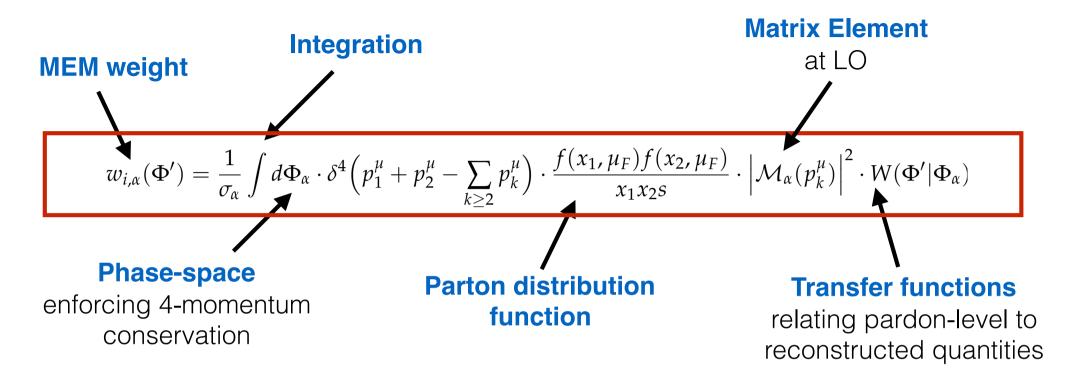
Observation 1.6\sigma (1.0 σ expected)


tttt cross section is measured to be $16.9^{+13.8}_{-11.4}$ fb, NLO SM cross section of $9.2^{+2.9}_{-2.4}$ fb

Constraint on Top-Higgs coupling Kt

(looser than Higgs measurements)

$$|y_{\rm t}/y_{\rm t}^{
m SM}| < 2.1$$
 at 95% confidence level


Conclusions and perspectives

Processes with top quarks produced at low rate in the SM

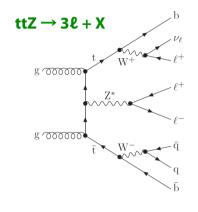
- tt+W and tt+Z are observed at 13 TeV
 - Processes very important to understand ttH signal extraction
 - Data is in agreement with SM at NLO
 - ttZ has a large signal: we can hope to perform differential measurements
- $tt + \gamma$ (8 TeV):
 - First measurement at CMS, to be performed at 13 TeV
- tZq at 13 TeV:
 - tZq is observed at CMS with 3.7σ (3.2σ expected)
 - Matrix element method improves expected significance by 20%
 - Can improve further lepton identification and non-prompt estimate
- tγq (13 TeV, NEW!):
 - New measurement: **evidence of tyq at 4.4σ** (3.0σ expected)
- Four top quarks (13 TeV)
 - Takes advantage of ttH and ttW/Z analyses
 - This very rare process is not yet observed, but is very sensitive to new physics
 - **Allow to constrain top-Higgs coupling** (although less precisely than ttH) through virtual Higgs diagrams

Back-up slides

Matrix Element Method

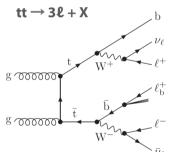
Interpretation: The MEM weight is the cross section, for a given hypothesis, evaluated at the phase space point of the event, convolved with the transfer functions

MEM likelihood ratio

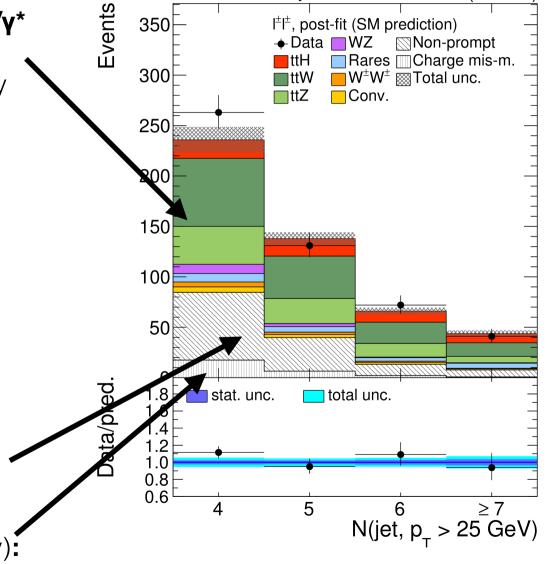

- Neyman-Pearson Lemma: Maximum discrimination between two hypotheses with a likelihood ratio

$$D_i = \frac{P(\boldsymbol{x}_i|S)}{P(\boldsymbol{x}_i|S) + P(\boldsymbol{x}_i|B)}$$

ttH multilepton: backgrounds


CMS HIG-17-004

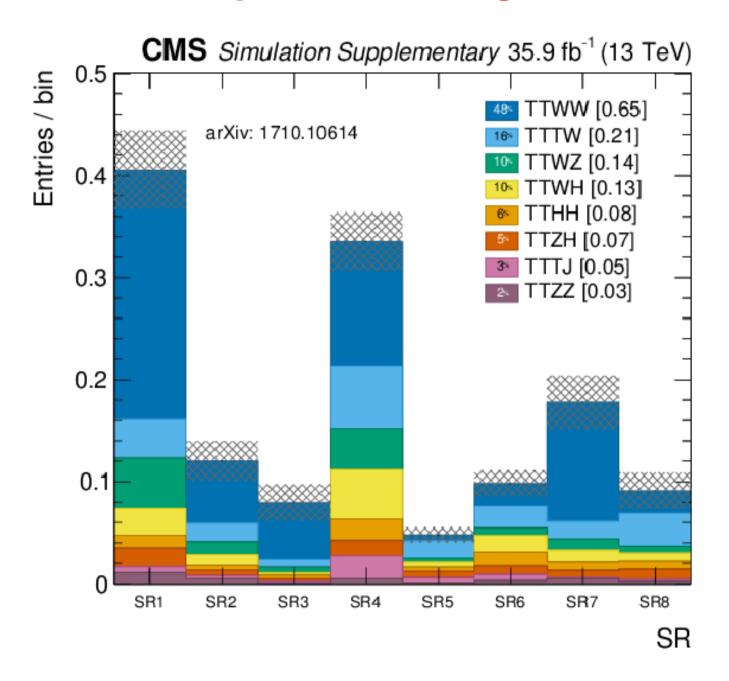
- from Monte Carlo,


- O(10%) uncertainty

Reducible: mainly tt+jets,

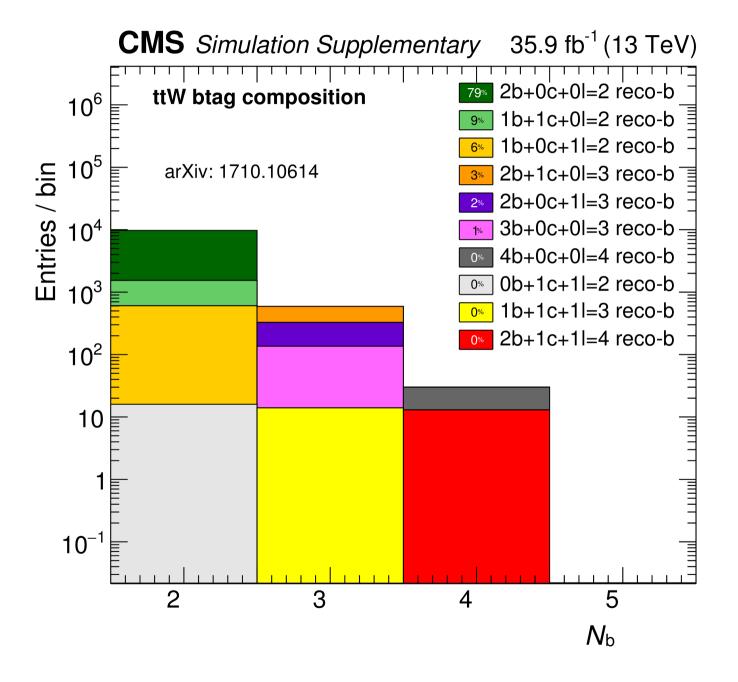
- shape obtained from data,
- O(30%) uncertainty
- Jets faking leptons: fake rate computed from QCD control region with loosened identification
- Charge mis-assignment (2lss only): flip rate from $Z \rightarrow \ell \pm \ell \pm$ data

N. Chanon - Rare top quark processes at CMS - ICHEP2018 - 16

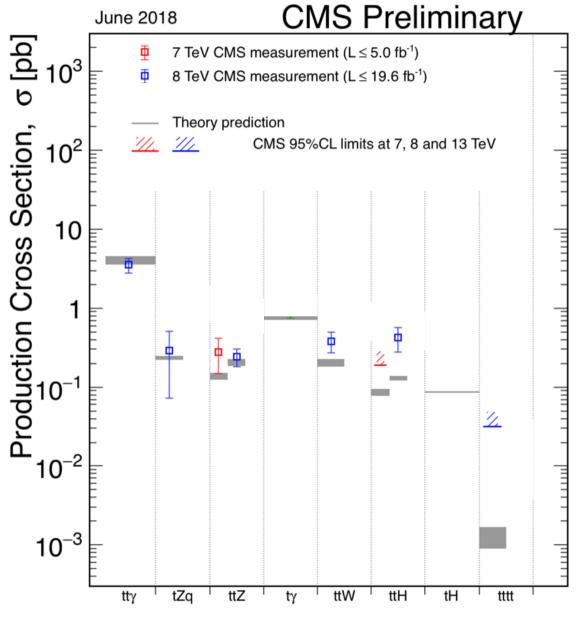


CMS Preliminary

35.9 fb⁻¹ (13 TeV)



Four tops: rare backgrounds



Four tops: ttW composition

Rare top quark processes: summary

All results at: http://cern.ch/go/pNj7