

Top Quark Properties Measurements with ATLAS

Reinhild Yvonne Peters

The University of Manchester

European Research Council Established by the European Commission

on behalf of the ATLAS Collaboration

Top Properties

- Charge
- Mass
- Spin correlation
- W helicity
- Colour Flow
- Asymmetry

. . .

Top Properties: A Plethora of Precision Results

and many many more...

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults

06.07.2018

Yvonne Peters

m_{top} [GeV]

Top Properties 4 You

MANCHESTER 1824

Top Properties 4 You

MANCHESTER

1824

Colour Flow in Top

- Top events as laboratory to test colour-flow tool
- Jets carry color, and are thus color connected to each other
 - Pairing of connection depends on nature of decaying particles

Color Flow Observable

Construct a local observable, constructed from particles within a chosen jet cone: Jet pull $\Delta \phi = \phi - \phi$.

- Pick a pair of jets in the event
- Build vectorial sum of jet components:

$$\vec{p} = \sum_{i} \frac{p_T^i |r_i|}{p_T^{jet}} \vec{r}_i$$

- \vec{r}_i : position of jet component i relative to center of jet
- p_Tⁱ: transverse momentum of component i
- p_{τ}^{Jet} : transverse momentum of jet

Gallicchio, Schwartz, PRL 105, 022001 (2010)

Colour Flow in Top

 Latest ATLAS analysis: Consider 4 variables in semileptonic tt events (>1 b-tagged jet)

- Two non-b-tagged jets:
 - Relative jet pull angles
 - Jet pull magnitude

- Two b-tagged jets
 - Relative jet pull angle
- Results corrected back to particle level

arXiv:1805.02935

Correction to stable particle-level (iterative Bayesian unfolding)

- Colour-flipped model disfavoured by the data (for this distribution x²/NDF: 45.3/3; SM Powheg+Pythia8: 17.1/3)
- MC modeling has room for improvement

arXiv:1805.02935

MANCHESTER

Top Properties 4 You

MANCHESTER

1824

Spin Correlations

- Top quarks decay before fragmentation
 - Spin information is preserved
- Hadron colliders: top quarks produced un-polarized, but
 - New physics (NP) could induce polarization
 - e. g. NP causing forward-backward t \bar{t} asymmetry \rightarrow more left-handed tops
 - Correlation between top and antitop spin can be extracted

Spin Correlations

- Measured spin correlation can change
 - Due to different decay

Analysis Strategy

- Highest spin analysing power: leptons from top decay \rightarrow use dileptonic tt events (eµ)
 - Very clean samples
- Use △ between both leptons
 → no kinematic event reconstruction required
- Unfolded differential measurements:
 - Parton-level
 - Inclusive and in bins of m_{tt}
 - Particle level
 - Inclusive and in bins of m_{tt}
- Full tī event reconstruction for m_{tī} ATLAS-CONF-2018-027

Parton

Unfolded distributions

• Unfolded distributions compared to different MC predictions

Data shows shallower slope than prediction

ATLAS-CONF-2018-027

MANCHESTER

1824

MANCHESTER 1824

Template fit

Fitting spin and no-spin hypotheses to parton-level distributions

ATLAS-CONF-2018-027

Template fit

Fitting spin and no-spin hypotheses to parton-level distributions

Spin correlations higher than SM prediction by 3.7 σ

(3.2 σ including theory uncertainty)

ATLAS-CONF-2018-027

Parton level $\Delta \phi(l^+, \bar{l})/\pi$ [rad/ π]

06.07.2018

Yvonne Peters

Parton level $\Delta \phi(l^+, \bar{l}) / \pi$ [rad/ π]

Top Properties 4 You

Charge

MANCHESTER

1824

- Mass
- Spin correlation
- W helicity
- Colour Flow
- Asymmetry

Bonus: 4top results

. . . .

Searches for 4top

MANCHESTER

Analysis strategies & SS dilepton event categories

- Selection of events with high-p_T
 objects (leptons, b-jets, jets, MET)
 - For I+jets & OS dilepton: include mass-tagged reclustered large-R jets
 - Divide into various categories
 - Validate background modeling and enhance signal-sensitivity

Yvonne Peters

Event Categories OS dilepton & I+jets

Fit: 4top

- L+jets & OS dilepton: profile likelihood fit to H_T^{had} (scalar sum of jet transverse momenta) in all 12 I+jets and 8 OS dilepton signal regions
- SS dilepton: Poisson likelihood ratio test (event counting)
- Combination: full fit to all regions; fully-correlated systematic uncertainties (background-modeling: uncorrelated)

Combined significance: 2.8 σ ("can't help myself" SS dilepton: 3 σ)

New Physics interpretations (SS dilepton only)

MANCHESTER

1824

Summary

- Three recent top results shown \rightarrow not just "the same old song"
 - Jet pull to explore QCD colour flow information
 - Spin correlations to test full chain from production to decay
 - 4Top searches, sensitive to plethora of new physics
- Colour flow: jet pull a sensitive observable for QCD colour → MC tuning?!
- Spin correlations: 3.7 σ (3.2 σ) deviation from SM shape for $\Delta \phi$
- 4top: observed value 2.8σ above background-only hypothesis

BACKUP

Colour Flow: Systematics

$\Delta \theta_{P} \left(i_{1}^{W}, i_{2}^{W} \right) \left[\% \right]$	$ heta_P\left(j_1^W, j_2^W ight)$			
$-\circ_{F}(j_{1}, j_{2})$ [* \circ_{J}	0.0 - 0.21	0.21 - 0.48	0.48 - 0.78	0.78 - 1.0
Hadronisation	0.55	0.13	0.24	0.14
Generator	0.32	0.25	0.50	0.01
b-tagging	0.35	0.13	0.20	0.31
Background model	0.30	0.16	0.16	0.27
Colour reconnection	0.22	0.16	0.16	0.18
JER	0.11	0.12	0.23	0.02
Pile-up	0.19	0.16	0.00	0.01
Non-closure	0.14	0.07	0.07	0.18
JES	0.12	0.06	0.14	0.06
ISR / FSR	0.15	0.02	0.12	0.02
Tracks	0.05	0.04	0.03	0.06
Other	0.02	0.01	0.01	0.02
Syst.	0.88	0.44	0.71	0.51
Stat.	0.23	0.19	0.19	0.25
Total	0.91	0.48	0.73	0.57

Spin correlations: systematics

Parton level

MANCHESTER

1824

4top: Systematics breakdown

For I+jets and OS dilepton

Uncertainty source	$\pm\Delta\mu$	
$t\bar{t}$ +jets modeling	+1.2	-0.96
Background-model statistical uncertainty	+0.91	-0.85
Jet energy scale and resolution, jet mass	+0.38	-0.16
Other background modeling	+0.26	-0.20
<i>b</i> -tagging efficiency and mis-tag rates	+0.33	-0.10
JVT, pileup modeling	+0.18	-0.073
$t\bar{t} + H/V$ modeling	+0.053	-0.055
Luminosity	+0.050	-0.026
Total systematic uncertainty	+1.6	-1.4
Total statistical uncertainty	+1.1	-1.0
Total uncertainty	+1.9	-1.7