

Recent Results on Vector Boson Scattering from CMS

Kenneth Long University of Wisconsin — Madison for the CMS Collaboration

Introduction and Motivation

- Diboson production via vector boson scattering
 - Important component of VVjj production proceeding entirely via EW interactions at tree level
 - Given SM Higgs, vector boson self-interactions precisely predicted
 - Deviations from predictions signal new physics in EW sector

Non-VBF ($\alpha_s^2 \alpha^2$) WZjj production

- Low cross sections for VBS just becoming accessible
 - Measurements in new channels at 13 TeV
 - Some channels moving from observation to measurement with the full Run 2 data set Kenneth Long

Kenneth Long

VBS ZZjj Candidate Event from PLB 774 (2017) 682

Overview of a VBS Measurement

- Uncertainty on signal or background
- Procedure: select VVjj events, estimate non-VVjj backgrounds, distinguish EW and QCD via kinematic selections
 - Low stats, S/B \Rightarrow MVA or shape-based fit \Rightarrow theory uncertainty
- Major uncertainties
 - Jet energy scale/resolution, background modeling
 - EW/QCD modeling dependence reduced for combined EW+QCD measurement Kenneth Long

WZ VBS at 13 TeV: EW Extraction

CMS-SMP-18-001

Simultaneously fit yield from background control region and 2D distribution of m_{jj} and $\Delta \eta(j_1, j_2)$

WZ VBS at 13 TeV: Results

• Observed (expected) significance of EW WZ 1.9 σ (2.7 σ) CMS-SMP-18-001 $\mu_{EW} = \sigma_{EW,obs} / \sigma_{EW,theo} = 0.64^{+0.45}_{-0.37}$

► N	leasure WZii EW+OCD cross section in	Fiducial Regions					
r iv			Tight Fiducial	Loose Fiducial			
V	BS-enhanced phase space	$p_{\rm T}(\ell_{\rm Z,1})$ [GeV]	> 25	> 20			
	- Fit vields in signal region (NOT shape	$p_{\rm T}(\ell_{\rm Z,2})$ [GeV]	> 15	> 20			
		$p_{\rm T}(\ell_{\rm W}) [{\rm GeV}]$	> 20	> 20			
	based) to reduce dependence on	$ \eta(\mu) $	< 2.5	< 2.5			
	theory prediction	$ \eta(e) $	< 2.5	< 2.5			
		$ m_{\rm Z} - m_{\rm Z}^{\rm IDG} $ [GeV]	< 15	< 15			
	 Extrapolate results to loose fiducial 	$m_{3\ell} [\text{GeV}]$	> 100	> 100			
	ragione for ageior comparison with	$m_{\ell\ell} [\text{GeV}]$ $n^{miss} [\text{GeV}]$	-	- 4			
	regions for easier companson with	p_{T} [OCV] $ n(\mathrm{i}) $	< 4.7	< 4.7			
	theory, following	$p_{\rm T}(j)$ [GeV]	> 50	> 30			
	Log Houshoo 2017 Papart [1]	$ \Delta R(\mathbf{j}, \ell) $	> 0.4	> 0.4			
	Les nouches 2017 neport [1]	$n_{ m j}$	≥ 2	≥ 2			
	Tight $\sigma_{WZ_{33}}^{\text{fid}} = 2.91^{+0.53}_{-0.40} \text{ (stat) } ^{+0.41}_{-0.24} \text{ (syst)}$	$p_{\rm T}({\rm b}) [{\rm GeV}]$	-	-			
		$n_{ m b-jet}$	-	-			
	-0.49 () -0.54 ())	m_{jj}	> 500	> 500			
1.1	fid.loose $4 \circ 1 \pm 0.72 (1 + 1) \pm 0.57 (1 + 1)$	$ \Delta \eta(\mathbf{j}_1, \mathbf{j}_2) $	> 2.5	> 2.5			
	OOSE $\sigma_{WZjj}^{\text{marging}} = 4.01_{-0.68}^{+0.12} \text{ (stat)} + 0.01_{-0.47}^{+0.01} \text{ (syst)}$	$ \eta_{3\ell} - \frac{1}{2}(\eta_{j_1} + \eta_{j_2}) $	< 2.0	-			
Compare tight fiducial to $\pi_{1,1,1,2} = 3.27^{\pm 0.39}(\text{scale}) \pm 0.15$ (PDF) computed using							
• Compare light housial to $\sigma_{\rm fid,MG} = 3.27 - 0.32(\text{scale}) \pm 0.13(1 \text{ Dr})$ computed using							
MG5_aMC@NLO+Py8 at LO with particle-level events from RIVET							
Kenneth Long [1] https://arxiv.org/abs/1803.07977 8							

W±W± VBS at 13 TeV: Overview

- Why W±W±jj →ℓ±ℓ±jj?
 - EW production dominant over QCD-induced
 - Distinct same-sign (SS) lepton state
 - Low background
- Selection
 - Exactly 2 SS leptons, $|m_e^{\pm}e^{\pm} m_Z| > 15$ GeV
 - $p_T^{miss} > 40 \text{ GeV}$
 - Two jets, $m_{jj} > 500 \text{ GeV}$; $\Delta \eta_{jj} > 2.5$; max($|z^*(\ell)|$) = max($|(\eta_{\ell} - 1/2(\eta_{j1+}\eta_{j2}))/\Delta \eta_{jj}|$) < 0.75
 - Expected S/B ~ 1/2 in signal region
- Backgrounds
- \geq 2 prompt SS leptons (WZ, QCD WW) \Rightarrow from Monte Carlo
 - Correct WZ using data in 3^l control regions
- Non-prompt backgrounds (dominant) \Rightarrow data driven
 - As for WZ (tight-to-loose ratios from dijet events)
- Charge mis-ID
 - Simulation corrected with data

Kenneth Long

PRL 120, 081801 (2018)

ZZ VBS at 13 TeV: Overview

Why ZZjj →4ℓjj?

- Access to boson polarizations via spin correlations
- ... But very low production cross section Selection
 - 4 leptons, 2 Z candidates with $m_{\ell^+\ell^-} \in [60, 120]$ GeV
 - Two jets, m_{ii} > 100 GeV; Expected S/B ~ 1/20
- Backgrounds
 - ≥ 4 prompt leptons (ttV, VVV, QCD ZZ) \implies from MC
 - QCD ZZ production via MG5_aMC ≤2j@NLO _
 - Low theory uncertainty, good data/MC agreement
 - Validate background modeling in background
 - dominated region with m_{ii} < 400 GeV or $\Delta \eta_{ii}$ < 2.5
 - Non-prompt backgrounds \implies data driven
 - Same technique as for WZ

ZZ VBS at 13 TeV: Results

PLB 774 (2017) 682

- Limited statistics, but strong discrimination feasible
 Train BDT with 7 discriminating variables
 - m_{jj} , $\Delta \eta_{jj}$, $z^*(Z_1)$, $z^*(Z_2)$, $R(p_T)$, dijet p_T balance, $m_{4\ell}$
 - Use all events with m_{jj} > 100 GeV
- Significance extracted via fit to BDT output distribution
 - Observed (expected) of 2.7σ (1.6σ)

Searches for Anomalous Couplings

- Generalized language for new physics in vector boson interactions
 Anomalous couplings (triple and quartic)
 - Observed as deviations at high mass
 - Defined by modifying SM Lagrangian or effective vertices

- Alternatively... expand in effective field theory (EFT)
 - in terms of Wilson coefficients c_{i} and New Physics scale Λ

$$\mathcal{L}_{SM} \longrightarrow \mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{n=1}^{\infty} \sum_{i} \underbrace{\frac{c_i^{(n)}}{\Lambda^n}}_{i} \mathcal{O}_i^{(n+4)}$$

- Non-unitary as $\sqrt{\hat{s}} \rightarrow \Lambda$ without form factor
 - Often presented without form factor for simplicity
 - Inclusion of form factor decreases limits

Limits on aQGCs: Procedure

- Fit to variable sensitive center of mass energy of the scattering system
 - WZ: m_T(WZ)
 - ZZ: m_{4l}
 - SS WW: mee
- Parameterization from Eboli, Gonzlez-Garcia, Mizukoshi [2] using MG5_aMC@NLO with reweighted events to grid of aQGC parameters
 - Interpolate between parameter points with quadratic fit to yields

- Analyses improve constraints on wide range of operators
 - Limits presented without unitarization scheme (shown in plots)
 - Unitary bounds provided for ZZ

Conclusions

- VBS measurements provide an important probe of a previously untested sector of the standard model
- So far the standard model is withstanding these new tests
 - Deviations could be subtle
 - More data and improved techniques help look for cracks with increased precision and at higher energy scales

Backup

Kenneth Long

18

Overview of Experimental Status: 13 TeV

Energy	Measurement	CMS
	W±W±jj → ℓ±vℓ±vjj	PRL 120, 081801 EW Sig. 5.5σ obs (5.7σ exp) Cross section (EW) aQGC Limits
13 TeV	ZZjj → 4ℓjj	PLB 774 (2017) 682 EW Sig. 2.7σ obs (1.6σ exp) Cross section (EW) aQGC Limits
	WZjj → 3ℓvjj	CMS-SMP-18-001 EW Sig. 1.9σ obs (2.7σ exp) Cross section (EW, EW+QCD) aQGC Limits

Overview of Experimental Status: 8 TeV

Energy	Measurement	ATLAS	CMS			
	$W^{\pm}W^{\pm}jj \longrightarrow \ell^{\pm}v\ell^{\pm}vjj$	PRL 113, 141803 EW Sig. 3.6σ obs (2.8σ exp) Cross sec (EW, EW+QCD) aQGC Limits PRD 96, 012007 Updated aQGC Limits	PRL 114, 051801 EW Sig. 1.9σ obs (2.9σ exp) Cross sec (EW+QCD) aQGC Limits			
	Wyjj $\rightarrow \ell^{\pm}$ vyjj		JHEP 06 (2017) 106 EW Sig. 2.7σ obs (1.5σ exp) Cross sec (EW, EW+QCD) aQGC Limits			
8 TeV	$Z\gamma jj \longrightarrow \ell^{\pm} v\gamma jj$	JHEP 07 (2017) 107 EW Sig. 2.0σ obs (1.8σ exp) Cross sec (EW, EW+QCD), aQGC Limits	PLB 770 (2017) 380 EW Sig. 3.0σ obs (2.1σ exp) Cross sec (EW, EW+QCD) aQGC Limits			
	WZjj $\rightarrow 3\ell$ vjj	PRD 93, 092004 (2016) Cross sec (EW, EW+QCD)	PRL 114, 051801 Cross sec (EW+QCD)			
	WVjj $\rightarrow \ell^{\pm}$ vjjj(j)	PRD 95, 032001 (2017) aQGC Limits				
Kenneth Long						