Tests of the electroweak sector with diboson final states at the ATLAS Experiment

Rustem Ospanov for the ATLAS collaboration

University of Science and Technology of China

July 5, 2018

Introduction

- Diboson production processes test gauge structure of Standard Model
- Sensitive to gauge boson self-interactions and longitudinal polarisation
- Precise tests of NNLO in QCD perturbative calculations
- > Probe for new phenomena via triple gauge boson coupling measurements

3 new ATLAS results using 36.1 fb⁻¹ data at $\sqrt{s} = 13$ TeV in this talk:

- $Z\gamma \rightarrow \nu \nu \gamma$ cross section and anomalous coupling tests
 - ATLAS-CONF-2018-035
- $W^{\pm}Z$ cross section and gauge boson polarisation
 - ATLAS-CONF-2018-034
- Measurement of electroweak production of same-sign WW bosons
 - ATLAS-CONF-2018-030
- Web pages will be public soon after the presentation

 $Z\gamma \rightarrow \nu\nu\gamma$ cross section and anomalous coupling tests

- Probe for anomalous neutral triple gauge couplings $ZZ\gamma$ and $Z\gamma\gamma$
- High branching fraction and no final state radiation

$Z\gamma ightarrow \nu \nu \gamma$

Photon + neutrinos fiducial region:

- $\blacktriangleright \ \ \, {\rm Photon \ with \ } p_T^{\gamma} > 150 \ {\rm GeV \ and \ } |\eta| < 2.37$
- Neutrinos with $p_T^{\nu\nu} > 150 \text{ GeV}$
- Anti-kt 0.4 jets with $p_T > 50$ GeV and $|\eta| < 4.5$

Signal modelling and theory predictions:

- Model $Z\gamma \rightarrow \nu \nu \gamma$ with Sherpa 2.2.2 with NNPDF3.0NNLO PDF
- Compare with NNLO in QCD predictions from MCFM and MATRIX
 - Apply particle-to-parton level corrections

$Z\gamma ightarrow u u \gamma$ experimental summary

Experimental selection:

- ▶ Well reconstructed isolated photon with $p_T^{\gamma} > 150 \text{ GeV}$
- Missing transverse energy $E_T^{miss} > 150 \text{ GeV}$
- Veto leptons to suppress $W\gamma$ background

Backgrounds and experimental uncertainty:

- Wγ and γ+jet backgrounds are estimated from control regions
- $e \rightarrow \gamma$ background is estimated from $Z \rightarrow ee$ events
- ▶ jet → γ background is estimated from sidebands
- > Dominant uncertainty due to mismodelling of photon efficiency and energy scale

r realected and observed event fields							
	$N_{ m jets} \geq$ 0 (stat.+syst.)	$N_{\rm jets} = 0 \text{ (stat.+syst.)}$					
$N^{W\gamma}$	$650\pm40\pm60$	$360\pm20\pm30$					
$\mathcal{N}^{\gamma+jet}$	$409\pm18\pm108$	$219\pm10\pm58$					
$N^{e \rightarrow \gamma}$	$320\pm15\pm45$	$254\pm12\pm35$					
$N^{jet \rightarrow \gamma}$	$170\pm30\pm50$	$140\pm20\pm40$					
$N^{Z(II)\gamma}$	$40\pm3\pm3$	$26\pm3\pm2$					
N ^{bkg} _{total}	$1580\pm50\pm140$	$1000\pm40\pm90$					
N ^{sig} (exp)	$2328\pm4\pm135$	$1710\pm4\pm91$					
$N_{total}^{sig+bkg}$	$3910\pm50\pm190$	$2710\pm40\pm130$					
N ^{data} (obs)	3812	2599					

Predicted and observed event yields

$Z\gamma \rightarrow \nu \nu \gamma ~{\rm cross}$ section

- Measured fiducial σ for $N_{jet} \ge 0$: $\sigma_{Data}^{\text{ext.fid.}} = 83.7^{+3.6}_{-3.5} \text{ (stat.)}^{+6.9}_{-6.2} \text{ (syst.)}^{+1.7}_{-2.0} \text{ (lumi.) fb}$
- ▶ NNLO MCFM prediction for $N_{jet} \ge 0$: $\sigma_{MCFM}^{\text{ext.fid.}} = 78.1 \pm 0.2 \pm 4.4$ fb
- Also measured fiducial and differential cross sections for N_{jet} = 0

$Z\gamma ightarrow u u \gamma$ - limits on anomalous couplings

- Select events with $p_T^{\gamma} > 600$ GeV and zero jets optimised for best sensitivity
- Predictions modified with MCFM by including $ZZ\gamma$ $(h_{3,4}^Z)$ and $Z\gamma\gamma$ $(h_{3,4}^\gamma)$ vertices
- ▶ h₃ (h₄) corresponds to electric (magnetic) dipole moment CP-conserving parameters
- Set limits in individual parameters and parameter pairs
- Factor of 3-7 improvements over the previous $Z\gamma$ results

$W^{\pm}Z$ cross section and gauge boson polarisation

- Probe gauge structure of Standard Model
- Sensitive to anomalous triple gauge boson couplings
- Precise measurements of differential and total cross sections
- Polarisation of W and Z bosons

$W^{\pm}Z$ production

Trilepton fiducial region:

- Select $Z \to e^{\pm}e^{\mp}/\mu^{\pm}\mu^{\mp}$ decays
 - $p_T^{e,\mu} > 15 \text{ GeV} \text{ and } |\eta^{e,\mu}| < 2.5$
 - ▶ $|m_{||} m_Z| < 10 \text{ GeV}$

• Select
$$W^{\pm}
ightarrow e^{\pm}
u_e / \mu^{\pm}
u_\mu$$
 decays

- $p_T^{e,\mu} > 15 \text{ GeV}$ and $|\eta^{e,\mu}| < 2.5$
- Transverse mass $m_T^W > 30 \text{ GeV}$
- Anti-kt 0.4 jets with $p_T > 25$ GeV and $|\eta| < 4.5$

Signal modelling:

- Model $W^{\pm}Z$ with POWHEGBOX at NLO in QCD
- Shower with PYTHIA 8.210 and CTEQ6L1PDF
- Shower with HERWIG to estimate uncertainty

Theory predictions:

- ▶ NNLO QCD $W^{\pm}Z$ cross sections with MATRIX
 - Apply particle-to-parton level corrections

Require $m_T^W > 30 \text{ GeV}$

$W^{\pm}Z$ experimental summary

Experimental selections:

- > 3 isolated well reconstructed e and μ , veto fourth lepton to suppress ZZ
- Separate and combined measurements for 4 lepton flavour channels

Backgrounds and experimental uncertainty:

- ▶ Fake lepton background measured from data with 30-40% uncertainty
 - 1.9% uncertainty on cross section measurement
- ZZ background normalised from data with 12% uncertainty
- Uncertainties for ttV, tZ and VVV backgrounds vary 15% to 30%
- e/μ efficiency mismodelling up to 1.5% uncertainty on cross section measurement
- Integrated luminosity 2.4% uncertainty on cross section measurement

Channel	eee	μee	$e\mu\mu$	$\mu\mu\mu$	All
Data	1279	1281	1671	1929	6160
Total Expected	1221 ± 7	1281 ± 6	1653 ± 8	1830 ± 7	5986 ± 14
WZ	922 ± 5	1077 ± 6	1256 ± 6	1523 ± 7	4778 ± 12
Misid. leptons	138 ± 5	34 ± 2	193 ± 5	71 ± 2	436 ± 8
ZZ	86 ± 1	89 ± 1	117 ± 1	135 ± 1	426 ± 3
$t\bar{t}+V$	50.0 ± 0.7	54 ± 0.7	56.1 ± 0.7	63.8 ± 0.8	225 ± 1
tΖ	23.1 ± 0.4	24.8 ± 0.4	28.8 ± 0.4	33.5 ± 0.5	110 ± 1
VVV	2.5 ± 0.1	2.8 ± 0.1	3.2 ± 0.1	3.6 ± 0.1	12.0 ± 0.2

Event yields per channel with only statistical uncertainty

$W^{\pm}Z$ cross section

- ► Measured: $\sigma_{W^{\pm}Z \rightarrow \ell^{\prime}\nu\ell\ell}^{\text{fid.}} = 63.7 \pm 1.0 \text{ (stat.)} \pm 2.3 \text{ (sys.)} \pm 0.3 \text{ (modelling)} \pm 1.5 \text{ (lumi.) fb.}$
- MATRIX: $\sigma_{W^{\pm}Z \to \ell' \nu \ell \ell}^{\text{fid.}} = 61.5^{+1.4}_{-1.3} \,\text{fb}$
- ► Measured charge ratio: $\sigma_{W^+Z \to \ell' \nu \ell \ell}^{\text{fid.}} / \sigma_{W^-Z \to \ell' \nu \ell \ell}^{\text{fid.}} = 1.47 \pm 0.05 \text{ (stat.)} \pm 0.02 \text{ (sys.)}.$

Precise tests of NNLO QCD calculations

$W^{\pm}Z$ single differential cross sections

- Unfolded single differential cross sections for p_T^Z , M_T^{WZ} , N_{jets} (below) and other variables
- Response matrix obtained with POWHEGBOX+PYTHIA

W and Z polarisation measurement

13

W and Z polarisation measurement

- Observed (expected) significance of 4.2σ (3.8σ) for longitudinally polarised W bosons
- Sensitive to new broad resonances not seen by direct searches

Electroweak production of same-sign WW bosons: $W^{\pm}W^{\pm}jj$

- Measure self-interactions of heavy gauge bosons
- ► Unitarity at high energies requires presence of the SM Higgs boson

$W^{\pm}W^{\pm}jj$ electroweak production

Same-sign dilepton fiducial region:

- ▶ Same-sign dilepton events with $m_{\parallel} > 20 \text{ GeV}$
 - e or μ with $p_T > 27$ GeV and $|\eta| < 2.5$
- Neutrinos with $p_T^{\nu\nu} > 30 \text{ GeV}$
- Anti-kit 0.4 jets with $|\eta| < 4.5$
- Optimised VBS jet selections:
 - Two leading jets with p_T > 65, 35 GeV
 - Dijet invariant mass m_{jj} > 500 GeV
 - ▶ Rapidity gap |∆y_{jj}| > 2

Signal modelling:

- Model W[±]W[±]jj electroweak and strong production with SHERPA 2.2.2
- Alternative NLO in QCD sample with with POWHEGBOX +PYTHIA8 for electroweak signal
- W[±]W[±]jj strong production with exactly four EW vertices subtracted as background

Dijet invariant mass for $m_{jj} > 500 \text{ GeV}$

Likelihood fit:

- \blacktriangleright 6 channels: $e^{\pm}e^{\pm}$, $e^{\pm}\mu^{\pm}$, $\mu^{\pm}\mu^{\pm}$
- Signal region: 4 m_{jj} bins for m_{jj} > 500 GeV
- Control region: 200 < m_{ii} < 500GeV</p>

$W^{\pm}W^{\pm}jj$ experimental summary

Experimental selection:

- lsolated well reconstructed same-sign dilepton events (e or μ)
- ▶ Veto third lepton to suppress WZ and veto *b*-jets to suppress $t\bar{t}$
- Require $E_T^{miss} > 30$ GeV and VBS jet selections

Backgrounds and experimental uncertainty:

- WZ background is normalised from trilepton control region with 8% uncertainty
- Fake lepton background measured from control regions with 50-90% uncertainty
 - Dominant experimental uncertainty
- $\blacktriangleright\,$ Electron charge misidentification and $\gamma \rightarrow e$ backgrounds are measured from data
- Other irreducible backgrounds are from Monte-Carlo simulation

	e^+e^+	e^-e^-	$e^+\mu^+$	$e^{-}\mu^{-}$	$\mu^+\mu^+$	$\mu^{-}\mu^{-}$	combined			
WZ	$1.7~\pm~0.6$	1.2 ± 0.4	13 ± 4	8.1 ± 2.5	5.0 ± 1.6	$3.3~\pm~1.1$	32 ± 9			
Non-prompt	4.1 ± 2.4	2.3 ± 1.8	9 ± 6	6 ± 4	0.57 ± 0.16	0.67 ± 0.26	23 ± 12			
e/γ conversions	1.74 ± 0.31	$1.8~\pm~0.4$	6.1 ± 2.4	3.7 ± 1.0	-	-	13.4 ± 3.5			
Other prompt	0.17 ± 0.06	0.14 ± 0.05	0.90 ± 0.24	0.60 ± 0.25	0.36 ± 0.12	0.19 ± 0.07	2.4 ± 0.5			
$W^{\pm}W^{\pm}$ jj strong	0.38 ± 0.13	0.16 ± 0.06	$3.0~\pm~1.0$	$1.2~\pm~0.4$	$1.8~\pm~0.6$	$0.76\pm~0.26$	$7.3~\pm~2.5$			
Expected background	$8.1~\pm~2.4$	$5.6~\pm~1.9$	32 ± 7	20 ± 5	$7.7~\pm~1.7$	$4.9~\pm~1.1$	78 ± 15			
$W^{\pm}W^{\pm}$ jj electroweak	3.80 ± 0.30	1.49 ± 0.13	$16.5~\pm~1.2$	$6.5~\pm~0.5$	$9.1~\pm~0.7$	3.50 ± 0.29	$40.9~\pm~2.9$			
Data	10	4	44	28	25	11	122			

Event yields before the fit

$W^{\pm}W^{\pm}jj$ electroweak production cross section

- Observed (expected with SHERPA) significance is 6.9σ (4.6σ)
- Measured fiducial cross section: $\sigma_{\text{Data}}^{\text{fid}} = 2.95 \pm 0.49 \text{ (stat.)} \pm 0.23 \text{ (sys.) fb}$
 - ▶ $\sigma_{\text{Data}}^{\text{fid}}$ includes $W^{\pm}W^{\pm}jj$ electroweak plus interference with $W^{\pm}W^{\pm}jj$ strong
 - $W^{\pm}W^{\pm}jj$ strong production with exactly four EW vertices subtracted as background

Predicted fiducial cross sections:

- PowhegBox: $\sigma_{\rm EWK}^{\rm fid} = 3.08^{+0.45}_{-0.46} \text{ (syst.+stat.) fb}$
- SHERPA: $\sigma_{\rm EWK}^{\rm fid} = 2.01^{+0.33}_{-0.23} \text{ (sys.+stat.) fb}$
- NLO electroweak corrections (-16% for SHERPA) and interference (+6%) are not included

Summary and conclusions

- Presented 3 new ATLAS results using 36.1 fb⁻¹ of data at $\sqrt{s} = 13$ TeV
 - $\blacktriangleright~Z\gamma \rightarrow \nu \nu \gamma$ cross section measurement and anomalous coupling tests
 - $W^{\pm}Z$ cross section and gauge boson polarisation measurements
 - Observed longitudinally polarised W bosons with 4.2σ significance
 - ▶ 6.9 σ observation of electroweak production of same-sign WW
- So far, measurements agree with SM predictions at NNLO or NLO
- More measurements in pipeline targeting other diboson final states
- > These and other measurements will be improved with full Run 2 dataset
- Thank you and stay tuned for more results!

BACKUP

$Z\gamma \rightarrow \nu \nu \gamma$ experimental setup

Backgrounds and experimental uncertainty:

- $W\gamma$ CR: invert lepton veto, 77% pure, $\sigma_{QCD} = 5.8\%$, $\sigma_{exp.} = 3.8\%$
- γ +jet CR: invert E_T^{miss} significance, 55% pure, $\sigma_{QCD} = 19\%$
- $e \rightarrow \gamma$ CR: require e instead of γ , $\sigma_{exp.} \approx 14\%$
- ▶ jet → γ background is estimated from sidebands
- Dominated by mismodelling of photon efficiency and photon energy scale

$W^{\pm}Z$ single differential cross sections

- Unfolded single differential cross sections
- Response matrix obtained with POWHEGBOX+PYTHIA model

$W^{\pm}Z$ single differential cross sections

- Unfolded single differential cross sections
- Response matrix obtained with POWHEGBOX+PYTHIA model

$W^{\pm}Z$ cross section

► Measured: $\sigma_{W^{\pm}Z \to \ell^{'}\nu\ell\ell}^{\text{fid.}} = 63.7 \pm 1.0 \,(\text{stat.}) \pm 2.3 \,(\text{sys.}) \pm 0.3 \,(\text{mod.}) \pm 1.5 \,(\text{lumi.}) \,\,\text{fb.}$

• MATRIX:
$$\sigma_{W^{\pm}Z \to \ell' \nu \ell \ell}^{\text{fid.}} = 61.5^{+1.4}_{-1.3} \, \text{fb}$$

$$\bullet \begin{array}{l} \sigma_{\rm fid.}^{\rm ofid.} \\ \sigma_{\rm fid.}^{\rm fid.} = 1.47 \pm 0.05 \, ({\rm stat.}) \pm 0.02 \, ({\rm sys.}). \end{array}$$

W and Z polarisation measurement

- Measure polarisation of W and Z gauge bosons using lepton angular distributions
- \blacktriangleright $f_0,\,f_L$ and f_R define the longitudinal, transverse-left handed and transverse-right handed helicity fractions at Born level

$$\frac{1}{\sigma_{W}\pm_{Z}}\frac{d\sigma_{W}\pm_{Z}}{d\cos\theta_{\ell,W}} = \frac{3}{8}f_{\rm L}(1\mp\cos\theta_{\ell,W})^2 + \frac{3}{8}f_{\rm R}(1\pm\cos\theta_{\ell,W})^2 + \frac{3}{4}f_{\rm 0}\sin^2\theta_{\ell,W}$$

Z polarisation:

 $\frac{1}{\sigma_W \pm z} \frac{d\sigma_W \pm z}{d\cos\theta_{\ell,Z}} = \frac{3}{8} f_{\rm L} (1 + 2\alpha\cos\theta_{\ell,Z} + \cos^2\theta_{\ell,Z}) + \frac{3}{8} f_{\rm R} (1 + \cos^2\theta_{\ell,Z} - 2\alpha\cos\theta_{\ell,Z}) + \frac{3}{4} f_0 \sin^2\theta_{\ell,Z}$

Diboson final states with ATLAS at \sqrt{s} = 13 TeV

Observation of $W^{\pm}W^{\pm}jj$ electroweak production

