New Results on Multi-Boson Production with the ATLAS Detector

Marc-André Pleier on behalf of the ATLAS collaboration

ICHEP 2018, Seoul, July 4-11 2018

LHC data

Brookhaven National Laboratory

Marc-André Pleier

2/11

Brookhaven National Laboratory

VBS/VVV Production and aQGCs

• Overview of studied <u>aQGCs</u>:

	WWWW	WWZZ	ZZZZ	WWAZ	WWAA	ZZZA	ZZAA	ZAAA	AAAA
$\mathcal{O}_{S,0}, \mathcal{O}_{S,1}$	√	\checkmark	√						
$\mathcal{O}_{M,0}, \mathcal{O}_{M,1}, \mathcal{O}_{M,6}, \mathcal{O}_{M,7}$	√	\checkmark	√	~	√	\checkmark	√		
$\mathcal{O}_{M,2}$, $\mathcal{O}_{M,3}$, $\mathcal{O}_{M,4}$, $\mathcal{O}_{M,5}$		\checkmark	√	~	√	\checkmark	√		
${\mathcal O}_{T,0}$, ${\mathcal O}_{T,1}$, ${\mathcal O}_{T,2}$	~	~	√	~	~	\checkmark	√	√	√
${\mathcal O}_{T,5}$, ${\mathcal O}_{T,6}$, ${\mathcal O}_{T,7}$		\checkmark	√	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
${\mathcal O}_{T,8}$, ${\mathcal O}_{T,9}$			\checkmark			\checkmark	\checkmark	\checkmark	\checkmark

Vertex-specific conversions from WHIZARD α_4, α_5 exist, e.g. for WWWW:

$$\alpha_4 = \frac{f_{S,0}}{\Lambda^4} \frac{v^4}{8}, \alpha_4 + 2 \cdot \alpha_5 = \frac{f_{S,1}}{\Lambda^4} \frac{v^4}{8}$$

- Experimental access: aQGCs modify total production rate as well as event kinematics
 - Use cross-section measurement or kinematics to constrain aQGCs
- Unitarisation methods:
 - Form factor
 - K-matrix unitarisation

$W^{\pm}Zjj \rightarrow \ell \nu \ell \ell jj_{ATLA}$

- 3 isolated leptons (e or μ), MET (via m_T) as WZ incl. (previous talk)
- VBS signal region (SR): \geq 2 jets, $p_T > 40$ GeV , $m_{ii} > 500$ GeV, b-jet veto
- BDT discriminant based on 15 variables reflecting VBS kinematics

Post-fit background normalisations $\mu_{WZ-QCD} = 0.60 \pm 0.25$ $\mu_{ttV} = 1.18 \pm 0.19$ $\mu_{ZZ} = 1.34 \pm 0.29$

WZjj-EW measured signal strength: $\mu_{\rm EW} = 1.77 \pm 0.41(\text{stat.}) \pm 0.17(\text{syst.}) = 1.77 \pm 0.45$

2018-033

Observed sign.: 5.6σ (3.3σ expected) Corresponding fid. cross section:

$$\sigma_{WZ^{\pm}jj \to \ell \nu \ell \ell j j}^{\text{fid., EW}} = 0.57 \stackrel{+0.15}{_{-0.14}} \text{fb}$$

= 0.57 $\stackrel{+0.14}{_{-0.13}} (\text{stat.}) \stackrel{+0.05}{_{-0.04}} (\text{sys.}) \stackrel{+0.04}{_{-0.03}} (\text{th.}) \text{ fb}.$

• Background estimate constrained via 3 control regions fitted w/ SR Marc-André Pleier

$W^{\pm}Zjj \rightarrow \ell \nu \ell \ell jj_{ATLA}$

- 3 isolated leptons (e or μ), MET (via m_T) as WZ incl. (previous talk)
- VBS signal region (SR): \geq 2 jets, $p_T > 40$ GeV, $m_{\gamma} = 0$ GeV, b-jet veto
- BDT discriminant based on 15 variables ref¹ K⁰² VBS kinematics

 Background estimate constrained via 3 control regions fitted w/ SR Marc-André Pleier

$W^{\pm}Zjj \rightarrow \ell \nu \ell \ell jj_{\underline{ATLAS-CONF-2018-033}}$

- Differential cross-sections extracted in SR (mjj > 500 GeV)
- Compared to normalized Sherpa predictions for WZjj (QCD + EW)

• More distributions available: N_{jets} , Σp_T^{-1} , m_T^{WZ} , $\Delta \phi_{jj}$, $\Delta \phi(W,Z)$, N_{jets}^{gap}

$\gamma\gamma \rightarrow WW @ 8 \text{ TeV}_{\frac{PRD 94, 032011 (2016)}{2}}$

- eµ pair with large pT, no other charged particles @ vertex
- 1st *SM signal* evidence: ATLAS: 3.0σ (8TeV)

- aQGC limits placed using dilepton pT distribution
- No (tag) jets -> suppressed WWWW, WWZZ, WWZγ contributions

WVjj $\rightarrow \ell \nu$ (jj/J) jj @ 8 TeV PRD 95, 032001 (2017)

- 1 isolated lepton (e or μ), MET, jj/J **hadronic** V, two tagging jets
- Not sensitive to SM xsec yet, but optimized for aQGC $\alpha_{4.5}$

- Merged (J) category improves expected sensitivity by 40%
- No conversion $\alpha_{4,5}$ to $f_{s0,1}$ since WWjj and WZjj contribute

WWW $\rightarrow 3\ell 3\nu/\ell^{\pm}\nu\ell^{\pm}\nu jj @ 8 TeV$

- 3 isolated leptons (e or μ), MET very clean, low statistics
- 2 isolated leptons (e or μ), MET, 2 jets (W[±] W[±] jj VBS "spin-off")
- combined signal significance is $\sim 1\sigma =>$ place upper limits on xsec

WVγ @ 8 TeV

EPJC 77 (2017) 646

- 1 isolated lepton (e or μ), MET, \geq 2 jets plus isolated photon(s): WV γ
- 1 isolated e, 1 isolated μ , MET plus isolated photon(s) : WW γ
- place upper limits on xsec in agreement with SM expectation

 Limits on 14 dim-8 operators with couplings f_{Ti}, f_{Mi} set based on above distributions (combined final states).

- All results use full 8 TeV datasets
- Trend that exclusive outperforms VBS, which is better than VVV
- Note strong impact of unitarisation
- Fair comparison requires some work

- All results use full 8 TeV datasets
- Trend that <u>exclusive</u> outperforms VBS which is better than
- Note strong impact of unitarisation
- Fair comparison requires some work

- All results use full 8 TeV datasets
- Trend that exclusive outperforms VBS, which is better than VVV
- Note strong impact of unitarisation
- Fair comparison requires some work

•T	CMS ATLAS	Channel	Limits	Δ _{EE} [TeV]
r_{α}/Λ^4		Ζγγ	[-1.6e+001, 1.9e+001]	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1,0		Ζγγ	[-4.2e+002, 3.8e+002]	0.7
	[]	Wγγ	[-3.8e+001, 3.8e+001]	00
		Wγγ	[-1.6e+001, 1.6e+001]	00
		Wγγ	[-4.9e+002, 4.7e+002]	0.6
		WVγ	[-2.5e+001, 2.4e+001]	00
	· • • •	Zγ jj	[-3.8e+000, 3.4e+000]	00
	<u> </u>	Wγjj	[-5.4e+000, 5.6e+000]	~~
	i i i i i i i i i i i i i i i i i i i	W [±] W [±] ii	[-4.2e+000, 4.6e+000]	00
$1/\Lambda^4$		Wγγ	[-4.6e+001, 4.7e+001]	~
	—	Zγjj	[-4.4e+000, 4.4e+000]	~
	—	Wγjj	[-3.7e+000, 4.0e+000]	~~
	H	W [±] W [±] ii	[-1.9e+000, 2.2e+000]	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
$_{2}/\Lambda^{4}$		Wγγ	[-1.0e+002, 1.0e+002]	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1,2	· · · · · · · · · · · · · · · · · · ·	Zγjj	[-9.9e+000, 9.0e+000]	00
		Wγjj	[-1.1e+001, 1.2e+001]	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	· · · · · · · · · · · · · · · · · · ·	W [±] W [±] ii	[-5.2e+000, 6.4e+000]	00
$/\Lambda^4$		Ζγγ	[-9.0e+000, 8.9e+000]	00
,		Ζγγ	[-3.0e+002, 2.9e+002]	0.6
	· · · · ·	Wγ ji	[-3.8e+000, 3.8e+000]	00
$/\Lambda^4$		Wγjj	[-2.8e+000, 3.0e+000]	~~
$/\Lambda^4$		Wγjj	[-7.3e+000, 7.7e+000]	~~~~
$/\Lambda^4$	H	Ζγ jj	[-1.8e+000, 1.8e+000]	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
$/\Lambda^4$		Ζγγ	[-6.9e+000, 6.9e+000]	00
,		Ζγγ	[-8.3e+002, 8.0e+002]	0.4
		Zγjj	[-4.0e+000, 4.0e+000]	∞
-4	$\lambda(\hat{s}) \stackrel{-2}{=} \frac{\lambda_0 \ 0}{(1 + \hat{s} / \Lambda_{FF}^2)^2} \log_{_{10}} \stackrel{2}{\operatorname{aQGC}}$	4 Limits	@95% C.L. [¹	ΓeV⁻⁴]

All results use full 8 TeV datasets

- Trend that exclusive outperforms VBS, which is better than VVV
- Note strong impact of unitarisation
 - Fair comparison requires some work

- All results use full 8 TeV datasets
- Trend that exclusive outperforms VBS, which is better than VVV
- Note **strong** impact of unitarisation
- Fair comparison requires some work

- All results use full 8 TeV datasets
- Trend that exclusive outperforms VBS, which is better than VVV
- Note **strong** impact of unitarisation
- Fair comparison requires some work
- Semileptonic VBS analysis very sensitive!

- All results use full 8 TeV datasets
- Trend that exclusive outperforms VBS, which is better than VVV
- Note strong impact of unitarisation
- Fair comparison requires some work
- Semileptonic VBS analysis very sensitive!

Summary

- Harvest of Run I multi-boson analyses is concluding established many new multi-boson processes, probed new couplings.
- Run II providing access to more processes (VBS, VVV), and better BSM sensitivity!
 - First observation of EW W[±]Zjj production!
- The Standard model is a tough nut to crack!

Dessert

A

WVγ aQGC limits @ 8 TeV EPJC 77 (2017) 646

- Observed and expected 95% CL intervals on anomalous quartic gauge couplings for the combined WVγ analysis.
- Couplings are unitarised using a dipole form factor with a form factor energy scale of $\Lambda_{FF} = 1$ TeV.

Vector Boson Scattering

• VV \rightarrow VV provides insight into EWSB mechanism, access to quartic couplings:

- 1,2 = Central, high- p_T charged leptons from V decays
- 3,4 = Forward/backward tagging jets (large m_{ii} and well separated in y)