

Multiboson production measurements

Riccardo Bellan Università di Torino and INFN

On behalf of the CMS Collaborations

ICHEP2018: 39th International Conference on high *energy* Physics

Seoul, Republic of Korea, 4 July – 11 July, 2018

Top and electroweak physics session

R.Bellan

Stairway to Heaven or Highway to Hell?

- Standard Model cross sections
 successfully tested over 9 orders of
 magnitude
- We discovered a Higgs boson
- *Still* we have to understand <u>in detail</u>
 the Electroweak Symmetry Breaking
 Mechanism (and if there is new physics
 beyond the SM)

It is crucial to deeply understand the final states **mediated by heavy gauge**

boson pair production: do we *master* them, using our NⁿLO computations?

Measure with high precision the differential cross sections Measure exclusive multi boson production mechanisms,

production mechanisms,

such as **VV scattering**

and **QGC mediated**

Investigate the high VV mass region

Multiboson production study at CMS

• Full plethora of results available in the CMS Standard Model public page: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP

I N F N

- Full plethora of results available in the CMS Standard Model public page: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP
- Today, focus on most recent multiboson results:
 - pp \rightarrow ZZ (+jets) \rightarrow 4 ℓ (@13 TeV, with \mathscr{L} = 35.9 fb⁻¹)
 - EPJ C 78 (2018) 165 and CMS-PAS-SMP-17-005 (arXiv: 1806.11073 sub PLB)
 - pp \rightarrow WZ \rightarrow 3 ℓ v (@13 TeV, with $\mathscr{L} = 35.9 \text{ fb}^{-1}$)
 - CMS-PAS-18-002
 - − pp → Wγγ → $\ell v \gamma \gamma$ and pp → Zγγ → $\ell \ell \gamma \gamma$ (@8 TeV, with $\mathscr{L} = 19.4 \text{ fb}^{-1}$)
 - JHEP 10 (2017) 072
 - pp \rightarrow W W/Z $\rightarrow \ell \nu qq'$ (@13 TeV, with $\mathscr{L} = 2.3 \text{ fb}^{-1}$)
 - CMS-PAS-16-012

Search for two <u>on-shell</u> (60 < $m_{\ell\ell}$ < 120 GeV) Z bosons decaying into electrons or muons pairs, consider jets if their p_T is > 30 GeV

• Final state can be **fully reconstructed**

 \rightarrow all kinematic variables are accessible

- Very clean final state
 - Irreducible background from genuine 4 lepton processes (ttZ, WWZ, ttWW) estimated with MC → they are pretty rare.
 - Reducible background from jets faking leptons estimated from **data**. Main sources of this kind are: DY, ttbar, WZ.
 - \rightarrow low (though dominant) background from misreconstructed particles
- Low $\sigma x BR$ compared to other channels

 \rightarrow maximize the selection efficiency (minimal cuts on lepton mainly driven by trigger thresholds, detector acceptance)

- Hit the regime where the measurements are sensitive to NNLO corrections
- Latest total cross section measurement is systematic uncertainty limited $\sigma_{tot}(pp \rightarrow ZZ) = 17.2 \pm 0.5(stat) \pm 0.7(sys) \pm 0.4(theo) \pm 0.4(lumi) pb$

To be compared with NNLO prediction from MATRIX MC $\sigma_{NNLO} = 16.2^{+0.6}_{-0.4}$

Measured differential cross section as a function of **lepton-related variable**, such as m_{ZZ}^{Z} , p_T^{ZZ} , p_T^{Z} , diboson angular separations, leptons' p_T^{Z} .

R.Bellan

$pp \rightarrow WZ \rightarrow 3\ell 1\nu$

- Select charged leptons to pair into <u>one on-shell Z</u>, w/ $|m_{11} - m_{z}| < 15$ GeV, plus an additional isolated high-p_T lepton. Require missing E_T > 30 GeV and trilepton-system invariant mass > 100 GeV.
- Background from at least 3 prompt leptons processes, such as ZZ → 4 leptons, ttZ, and tZq, is estimated with simulation and validated in dedicated data control regions.
- Background from photon conversions (in Z+γ process) is estimated with simulation and validated in a dedicated data control region.
- Background from jets faking leptons are estimated from data. The main sources of this kind are DY and ttbar.

$pp \rightarrow WZ \rightarrow 3\ell 1\nu$ CMS-PAS-SMP-18-002

- Select charged leptons to pair into <u>one on-shell Z</u>, w/ $|m_{11} - m_{z}| < 15$ GeV, plus an additional isolated high-p_T lepton. Require missing E_T > 30 GeV and trilepton-system invariant mass > 100 GeV.
- Background from at least 3 prompt leptons processes, such as ZZ → 4 leptons, ttZ, and tZq, is estimated with simulation and validated in dedicated data control regions.
- Background from photon conversions (in Z+γ process) is estimated with simulation and validated in a dedicated data control region.
- Background from jets faking leptons are estimated from data. The main sources of this kind are DY and ttbar.

- Measurements and prediction in very good agreement.
- We also measured the W⁺ and W⁻ differential cross sections separately, founding everything consistent with theory.

5th July 2018 – Multiboson at CMS

5th July 2018 – Multiboson at CMS

$pp \rightarrow W\gamma\gamma$ and $Z\gamma\gamma$ Fiducial cross sections

for a for a

\overline{q} W/Z \overline{q} W/Z \overline{q} V_{γ}						
Definition of the $W\gamma\gamma$ fiducial region	Channel	Measured fiducial cross section				
$p_{ m T}^{\gamma} > 25{ m GeV}, \eta^{\gamma} < 2.5 \ p_{ m T}^{\ell} > 25{ m GeV}, \eta^{\ell} < 2.4$	$W\gamma\gamma ightarrow e^\pm u\gamma\gamma$	$4.2\pm2.0(\mathrm{stat})\pm1.6(\mathrm{syst})\pm0.1(\mathrm{lumi})\mathrm{fb}$				
One candidate lepton and two candidate photons	${ m W}\gamma\gamma ightarrow\mu^{\pm} u\gamma\gamma$	$6.0\pm1.8(\mathrm{stat})\pm2.3(\mathrm{syst})\pm0.2(\mathrm{lumi})\mathrm{fb}$				
$m_{ m T}>40{ m GeV}$	$W\gamma\gamma ightarrow\ell^\pm u\gamma\gamma$	$4.9\pm1.4(\mathrm{stat})\pm1.6(\mathrm{syst})\pm0.1(\mathrm{lumi})\mathrm{fb}$				
$\Delta R(\gamma, \gamma) > 0.4$ and $\Delta R(\gamma, \ell) > 0.4$	$Z\gamma\gamma ightarrow { m e}^+{ m e}^-\gamma\gamma$	$12.5 \pm 2.1 ({ m stat}) \pm 2.1 ({ m syst}) \pm 0.3 ({ m lumi}) { m fb}$				
Definition of the $Z\gamma\gamma$ fiducial region	$Z\gamma\gamma ightarrow\mu^+\mu^-\gamma\gamma$	$12.8\pm1.8(\mathrm{stat})\pm1.7(\mathrm{syst})\pm0.3(\mathrm{lumi})\mathrm{fb}$				
$p_{ m T}^{\ell} > 15$ GeV, $ \eta^{\ell} < 2.5$ $p_{ m T}^{\ell} > 10$ GeV, $ \eta^{\ell} < 2.4$	$Z\gamma\gamma ightarrow \ell^+\ell^-\gamma\gamma$	$12.7\pm1.4(\mathrm{stat})\pm1.8(\mathrm{syst})\pm0.3(\mathrm{lumi})\mathrm{fb}$				
Two oppositely charged candidate leptons and two candidate photons	Channel	Prediction				
$p_{ m T}^{\ell} > 20{ m GeV}$ $m_{\ell\ell} > 40{ m GeV}$	$W\gamma\gamma ightarrow\ell^\pm u\gamma\gamma$	$4.8\pm0.5\mathrm{fb}$				
$\Delta R(\gamma, \gamma) > 0.4, \Delta R(\gamma, \ell) > 0.4, \text{ and } \Delta R(\ell, \ell) > 0.4$	${ m Z}\gamma\gamma ightarrow\ell^+\ell^-\gamma\gamma$	$13.0\pm1.5~\mathrm{fb}$				

• Statistical and systematical uncertainty are comparable.

R.Bellan

• Quartic gauge couplings (QGC)

5th July 2018 – Multiboson at CMS

5th July 2018 – Multiboson at CMS

- Search for **new physics** *while doing* **EW measurements**
- Look for deviations from SM in tail of distributions $(\mathbf{m}_{VV}, \mathbf{m}_{II}, \mathbf{m}_{II}, \mathbf{p}_{T,V}, ...)$
- Parametrize the new physics adding terms to the SM lagrangian
- Several possibilities:
 - Effective vertex approach [Nucl.Phys.B282(1987)253] \rightarrow used in ZZ analysis.
 - Effective lagrangian approach [Phys.Rev.D41(1990)2113] \rightarrow used in WV analyses.
 - Effective field theory approach [Phys.Rev.D48(1993)2182] → used in WW, VBS and triboson analyses.
- Parameters are usually varied *one-by-one* or at most *two-by-two*, as there is little correlation among them.

- <u>No</u> significant <u>deviation</u> w.r.t. SM are observed
- Couplings are measured (or limits are set) by performing **binned fit in single sensitive observable**
 - <u>Limiting factors</u>: observed statistics in the tail (primary) and systematic and statistical uncertainty on the signal model (secondary)

Limits from WZ $\rightarrow 3\ell 1\nu$

Most stringent limits up to day on C_w an C_{www}

Designed to **maximize sensitivity** to anomalous TGC

Identify leptonically decaying W boson while other W or Z boson decays to jets select **dijet events** and **boosted** events such that the decay jets merge into a **single jet**

	aTGC	expected limit	observed limit
r m.	$\frac{c_{WWW}}{\Lambda^2}$ (TeV ⁻²)	[-8.73 , 8.70]	[-9.46 , 9.42]
EF	$\frac{\tilde{c}_W}{\Lambda^2}$ (TeV ⁻²)	[-11.7 , 11.1]	[-12.6 , 12.0]
d	$\frac{\tilde{c}_B}{\Lambda^2}$ (TeV ⁻²)	[-54.9 , 53.3]	[-56.1, 55.4]
n.	λ	[-0.036 , 0.036]	[-0.039 , 0.039]
ert	Δg_1^Z	[-0.066 , 0.064]	[-0.067 , 0.066]
Þğ<	$\Delta \kappa_Z$	[-0.038 , 0.040]	[-0.040 , 0.041]

8 TeV data analysis [Eur.Phys.J. C73 (2013) 2283] still provides better limits.

R.Bellan

Anomalous Triple Couplings Summary

R.Bellan

Anomalous Quartic Couplings Summary (dim-8 transverse parameters)

June 2018	CMS ATLAS	Channel	Limits	∫/dt	ſs	
f / A 4		Wγγ	[-3.4e+01, 3.4e+01]	19.4 fb ⁻¹	8 TeV	_
$\Gamma_{T,0}$ / Λ		Wγγ	[-1.6e+01, 1.6e+01]	20.3 fb ⁻¹	8 TeV	
		Ζγγ	[-1.6e+01, 1.9e+01]	20.3 fb ⁻¹	8 TeV	
		ŴΫγ	[-1.8e+01, 1.8e+01]	20.2 fb ⁻¹	8 TeV	
		WVγ	[-2.5e+01, 2.4e+01]	19.3 fb ⁻¹	8 TeV	
	н	Zγ	[-3.8e+00, 3.4e+00]	19.7 fb ⁻¹	8 TeV	
	н	Zγ	[-3.4e+00, 2.9e+00]	29.2 fb ⁻¹	8 TeV	
	H	Wγ	[-5.4e+00, 5.6e+00]	19.7 fb ⁻¹	8 TeV	
	H	ss WW	[-4.2e+00, 4.6e+00]	19.4 fb ⁻¹	8 TeV	
		ss WW	[-6.2e-01, 6.5e-01]	35.9 fb ⁻¹	13 TeV	
		WZ	[-7.2e-01, 7.5e-01]	35.9 fb ⁻¹	13 TeV	
		<u>ZZ</u>	[-4.6e-01, 4.4e-01]	<u>35.9 fb⁻</u>	13 IeV	
$f_{T,1}/\Lambda^4$		WVγ	[-3.6e+01, 3.6e+01]	20.2 fb	8 IeV	
-1,1		Ζγ	[-4.4e+00, 4.4e+00]	19.7 fb ⁻	8 TeV	
		VVγ	[-3.7e+00, 4.0e+00]	19.7 fb ⁻	8 TeV	
		SS WW	[-2.1e+00, 2.4e+00]	19.4 fb ⁻¹	8 IeV	
		SS VV VV	[-2.8e-01, 3.1e-01]	35.9 fb	13 TeV	
	the second s	WZ	[-4.80-01, 5.20-01]	35.9 fb	13 TeV	
				35.9 fb		_
f_{T_2}/Λ^4		νννγ	[-7.20+01, 7.20+01]	20.2 fb	8 TeV	
1,2			[-9.90+00, 9.00+00]	19.7 fb 10.7 fb ⁻¹		
			$[-5.90 \pm 00, 7.10 \pm 00]$	19.7 ID 10.4 fb ⁻¹		
			[-8.90, 0.1, 1.00+0.0]	19.4 ID 25.0 fb ⁻¹		
		33 VV VV	[-1.4e+00, 1.8e+00]	35.9 ID	13 ToV	
	8	77	[-1.2e+00, 1.2e+00]	35.9 ID 35.9 fb ⁻¹	13 TeV	
5 1 + 4		<u>7</u> vv	[-9.3e+00, 9.1e+00]	20.3 fb^{-1}	8 TeV	_
$f_{T,5}/\Lambda^2$		WVv	[-2.0e+01, 2.1e+01]	20.3 fb^{-1}	8 TeV	
	· · · ·	Wγ	[-3.8e+00, 3.8e+00]	19.7 fb ⁻¹	8 TeV	
E 1 • 4		WVv	[-2.5e+01, 2.5e+01]	20.2 fb ⁻¹	8 TeV	
$\Gamma_{T,6} / \Lambda$. н і	Wγ	[-2.8e+00, 3.0e+00]	19.7 fb^{-1}	8 TeV	
f / A 4		WVγ	[-5.8e+01, 5.8e+01]	20.2 fb^{-1}	8 TeV	_
$\Gamma_{T,7}$ / Λ	· • •	Wγ	[-7.3e+00, 7.7e+00]	19.7 fb ⁻¹	8 TeV	
f/Λ^4	H	Ζγ	[-1.8e+00, 1.8e+00]	19.7 fb ⁻¹	8 TeV	_
T,8 / T	н	Zγ	[-1.8e+00, 1.8e+00]	20.2 fb ⁻¹	8 TeV	
	No. 1997	ZŻ	[-8.4e-01, 8.4e-01]	35.9 fb ⁻¹	13 TeV	
f_{-} / Λ^4	H	Ζγγ	[-7.4e+00, 7.4e+00]	20.3 fb ⁻¹	8 TeV	
T,9 77	н	Zγ	[-4.0e+00, 4.0e+00]	19.7 fb ⁻¹	8 TeV	
	н	Zγ	[-3.9e+00, 3.9e+00]	20.2 fb ⁻¹	8 TeV	
	M	ZZ	[-1.8e+00, 1.8e+00]	35.9 fb ⁻¹	13 TeV	
100		100				
-100	0	100	200			300
		~ ^	CC Limita @0			41

R.Bellan

5th July 2018 – Multiboson at CMS

Fisica

INFN

- We discovered a Higgs boson, yet the comprehension of the Electroweak Symmetry Breaking is not completed
 - → Understanding the multiboson production is now the key point for the comprehension of the Standard Model!
- Limits on anomalous couplings more stringent than previous collider experiments
- Time of multiboson production is now, the New Frontier will be: VV + jets, Vector Boson Scattering and triboson production
 - → these are among the hot topics of LHC Run II (and more)!

Details on results can be found in the public pages of the CMS experiment: *http://cms-results.web.cern.ch/cms-results/public-results/publications/SMP/index.html*

More Material

ZZ Complete Cut List

Fiducial region (baseline)

 $+ m_{jj} > 100 \text{ GeV}$

Fiducial region (VBS)

Search region (baseline)

Search region (VBS)

- $|\eta_e| < 2.5 p_T^e > 7 \text{ GeV}, |\eta_{\mu}| < 2.4 p_T^{\mu} > 5 \text{ GeV}, \text{ relative isolation } < 0.35 \text{ in a cone of } \Delta R = 0.3, \text{ CMS tight ID and SIP} = |IP/\sigma_{IP}| < 4$
- At least a lepton with $p_T > 20$ GeV and a $\mu(e)$ with $p_T > 10(12)$ GeV + $m_{ii} > 100$ GeV
- $60 < m_z < 120 \text{ GeV}$ (On shell), $m_{\text{ll crossed(Opposite sign same flavour)}} > 4 \text{ GeV}$
- Loosely ID jets, reco with anti- $k_T 0.4$; $|\eta_{iet}| < 4.7$ and $p_T > 30$ GeV

ZZ+jets systematic uncertainties

	8 Te	V data	13 TeV data		
Systematic source	Absolute (%)	Normalized (%)	Absolute (%)	Normalized (%)	
Trigger	1.5	—	2.0	_	
Lepton reconstruction and selection	0.9 - 4.4	≤ 0.1	3.7-4.5	0.1-0.8	
Jet energy scale	1.5-9.2	1.5-9.1	4.6-17.6	4.6-17.6	
Jet energy resolution	0.2 - 1.7	0.2–1.7	2.1 - 8.4	2.1-8.4	
Background yields	0.7-7.2	0.7 - 5.4	0.5-2.9	0.4-2.1	
Pileup	1.8	1.8	0.3-1.9	0.6-1.8	
Luminosity	2.6	—	2.5	—	
Choice of Monte Carlo generators	0.2-3.7	0.2-3.7	0.5-5.1	0.8-4.8	
qq/gg cross section	0.1-0.8	0.1-0.8	< 0.1-0.3	0.1-0.2	
PDF	1.0	—	< 0.1-0.2	< 0.1-0.2	
α _S	< 0.1	<0.1	≤ 0.1	≤ 0.1	

$m_{4\ell}$ [GeV]	m_{Z1} [GeV]	<i>m</i> _{Z2} [GeV]	m_{jj} [GeV]	$ \Delta\eta_{jj} $	$\eta_{Z_1}^{\star}$	$\eta^{\star}_{Z_2}$	BDT score
365.8	91.4	101.1	844.1	3.4	-0.7	0.0	0.97
325.1	93.1	96.3	1332.9	5.2	0.0	-1.8	0.98
263.8	91.9	88.0	829.7	2.2	-0.5	1.1	0.94
562.8	93.7	88.0	947.3	2.8	0.6	0.6	0.93
248.8	91.5	89.2	1340.9	5.4	-0.5	0.2	0.98
375.2	89.4	98.5	1052.5	3.8	0.7	-0.2	0.96
482.1	95.0	95.6	1543.1	4.8	-1.6	2.5	0.99

- Require 2 isolate high- p_T leptons of **opposite charge** (outside the m_Z mass window, if of same flavour). Veto additional leptons, cut on quantities such as $p_T^{\ ll}$, m_{ll} , missing E_T (or its projection), missing track p_T , jet b-tagging, Either jet veto or 0-1 jet categorization.
- Background from ttbar and W+jets is measured with data, DY with MC normalized to data, while Wy, Wy*, WZ, ZZ and VVV are estimated from simulation.

5th July 2018 – Multiboson at CMS

WZ, conversion CR

• Extension of the SM Lagrangian by introducing additional **dimension-8 (or 6) operators**:

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} O_i + \dots$$

desideratum: $\Lambda \sim 1-2$ TeV

- **Effective field theory** is useful as a methodology for studying possible new physics effects from massive particles that are **not directly detectable**.
 - Underlying assumption: scale Λ is large compared with the experimentally-accessible energy
 - These operators have coefficients of inverse powers of mass (Λ), and hence are suppressed if this mass is large compared with the experimentally-accessible energy
 - <u>Limit</u>: Λ so large that the effect is comparable to missing higher order corrections from SM
 - An effective field theory is the **low-energy approximation of the new physics**
- coefficients in **dimension-6** (i.e. c_i/Λ^2) (e.g., hep-ph/9908254), may affects 3 boson vertices too:

- $C_{\phi W}/\Lambda^2$ (VBFNLO), a_0^W/Λ^2 , a_C^W/Λ^2 (CALCHEP)...

• coefficients in **dimension-8** (i.e. c_i/Λ^4) (e.g., hep-ph/0606118), **modifies 4 boson vertices only**:

WZ aTGC

R.Bellan

