Measurement of the effective weak mixing angle at D0

Siqi Yang

University of Science and Technology of China (P.R.C.)
University of Iowa (US)
on behalf of the D0 collaboration

International Conference on High Energy Physics
6 July, 2018, Seoul, Korea
Motivation

The weak mixing angle ($\sin^2 \theta_W$) measurement

- fundamental parameter of Standard Model
- most precise results from LEP/SLD
- the least precise one among all electroweak fundamental parameters
- the 2000 prediction for the Tevatron experiments single channel: \(~0.00050\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Relative Uncertainty from Experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>fine structure constant α</td>
<td>$\sim 10^{-8}$</td>
</tr>
<tr>
<td>fermi-constant G_F</td>
<td>$\sim 10^{-5}$</td>
</tr>
<tr>
<td>Z boson mass M_Z</td>
<td>$\sim 10^{-5}$</td>
</tr>
<tr>
<td>weak mixing angle $\sin^2 \theta_W$</td>
<td>best single measurement: 10^{-3}</td>
</tr>
<tr>
<td></td>
<td>LEP/SLD combine: 6×10^{-4}</td>
</tr>
</tbody>
</table>
Weak mixing angle from A_{FB}

Forward-backward charge asymmetry (A_{FB})

- Observed as a function of dilepton mass
- Sensitive to the weak mixing angle

$$g_V^i \equiv t_{3L}(i) - 2q_i \sin^2 \theta_W$$
$$g_A^i \equiv t_{3L}(i)$$

$\cos \theta > 0$: forward
$\cos \theta < 0$: backward

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$
Tevatron and the D0 detector

- tracking:
 - scintillating fiber + silicon microstrip trackers
 - 2T solenoid
- calorimeter (for electrons)
 - Central Calorimeter (CC) $\eta<1.1$
 - Endcap Calorimeters (EC) $1.5<\eta<3.2$
- muon system: $\eta<2.0$

Siqi Yang, 2018-July-06, ICHEP
D0 measurements review

2008, D0 1 fb⁻¹
electron channel
precision: 0.0019
first measurement at hadron collider

2011, D0 5.1 fb⁻¹
electron channel
precision: 0.0010

2015, D0 9.7 fb⁻¹
electron channel
precision: 0.00047
D0 electron final result
First time close to LEP/SLD

2018, D0 8.6 fb⁻¹
muon channel
precision: 0.00064
D0 muon final result
Best muon channel to date

D0 Combined precision: 0.00040
Best single hadron collider experiment to date
Best light-quark measurement

Siqi Yang, 2018-July-06, ICHEP
2008 D0 electron channel

A first measurement at hadron collider experiment

- Tevatron RunII, 1 fb$^{-1}$
- PDF: CTEQ6, with a simple higher order correction: ZGRAD2 vs. pythia
- use result to predict precision with 10 fb$^{-1}$

$$\sin^2 \theta_{\text{eff}}^{\ell} = 0.2326 \pm 0.0019$$
$$= 0.2326 \pm 0.0018(\text{stat.}) \pm 0.0003(\text{syst.}) \pm 0.0005(\text{PDF})$$

Predicted for 10 fb$^{-1}$ using 1 fb$^{-1}$ results

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>stat.</td>
<td>0.0005</td>
</tr>
<tr>
<td>syst.</td>
<td>negligible</td>
</tr>
<tr>
<td>PDF</td>
<td>negligible</td>
</tr>
<tr>
<td>total</td>
<td>~0.0005</td>
</tr>
</tbody>
</table>
2011 D0 electron channel

An important next step estimation

- Tevatron RunII, 5 fb⁻¹
- PDF: CTEQ6L
- expectation for future not optimistic as before, syst. uncertainty becomes very important!
 - syst. not reducing as data accumulates
 - syst. limits data sample (bad quality events removed)

\[
\sin^2 \theta_{\text{eff}}^\ell = 0.2326 \pm 0.0010
\]
\[
= 0.2309 \pm 0.0008\text{(stat.)} \pm 0.00029\text{(syst.)} \pm 0.00048\text{(PDF)}
\]

<table>
<thead>
<tr>
<th></th>
<th>predicted for 10 fb⁻¹ using 1 fb⁻¹ result</th>
<th>predicted for 10 fb⁻¹ using 5 fb⁻¹ result</th>
</tr>
</thead>
<tbody>
<tr>
<td>stat.</td>
<td>0.0005</td>
<td>0.0006</td>
</tr>
<tr>
<td>syst.</td>
<td>negligible</td>
<td>0.0003</td>
</tr>
<tr>
<td>PDF.</td>
<td>negligible</td>
<td>0.00048</td>
</tr>
<tr>
<td>total</td>
<td>~0.0005</td>
<td>~0.00085</td>
</tr>
</tbody>
</table>

Siqi Yang, 2018-July-06, ICHEP
Lepton calibrations

Large uncertainty

• due to noise and detector aging
• affects mass reconstruction, thus affects A_{FB} vs. mass
• the electron energy calibration was ±0.1%, but to avoid being dominated by systematics, need ±0.01%

Difficult to calibrate

• hard to simulate detector aging effects
• simple one parameter calibration $E_{corr} = k \times E_{obs}$ is insufficient

At hadron colliders, lepton energy can be calibrated using Z mass. However, the only one constraint limits the number of parameters

\[
E_{corr} = k \times E_{obs} \quad \checkmark \\
E_{corr} = k \times E_{obs} + b \quad \times
\]
Lepton calibrations (2)

General idea

- multip-parameters

\[E(\eta)_{\text{corr}} = k(\eta) \times E(\eta)_{\text{obs}} + b(\eta) \]

- more constraints: separating Z samples
 - large opening angle between leptons: lower energy
 - small opening angle between leptons: higher energy

- reduce correlation between \(k \) and \(b \) parameters

Data/MC separately calibrated

- calibrate to generator level information
- not directly calibrate data to MC, because MC itself has eta-dependence
Electron calibration

Multiple-parameter calibration

- improve the electron energy calibration precision to ~0.01%
- reduce energy-eta dependence

\[E(\eta)_{\text{corr}} = k(\eta) \times E(\eta)_{\text{obs}} + b(\eta) \]

di-electron mass before (a) and after (b) our additional calibrations as a function of electron \(\eta \). For events where both electrons in CC (CC-CC), both in EC (EC-EC) and one in CC and one in EC (CC-EC), the major difference is in the absolute energy of electrons. EC-EC electrons have highest energy due to Z boost, and CC-EC electrons have lowest energy.
First time high precision!
- 10 fb$^{-1}$, full RunII data
- improved by novel electron calibration method
 - 75% more statistics than simple sample size scaling (increased acceptance and improved track reconstruction)
- negligible syst. uncertainty

$$\sin^2 \theta_{\text{eff}} = 0.23147 \pm 0.00047$$

$$\sin^2 \theta_{\text{eff}} = 0.23137 \pm 0.00047$$

<table>
<thead>
<tr>
<th></th>
<th>predicted for 10 fb$^{-1}$ using 1 fb$^{-1}$ result</th>
<th>predicted for 10 fb$^{-1}$ using 5 fb$^{-1}$ result</th>
<th>10 fb$^{-1}$ results</th>
</tr>
</thead>
<tbody>
<tr>
<td>stat.</td>
<td>0.0005</td>
<td>0.0006</td>
<td>0.00043</td>
</tr>
<tr>
<td>syst.</td>
<td>negligible</td>
<td>0.0003</td>
<td>0.00008</td>
</tr>
<tr>
<td>PDF.</td>
<td>negligible</td>
<td>0.00048</td>
<td>0.00017</td>
</tr>
<tr>
<td>total</td>
<td>~0.0005</td>
<td>~0.00085</td>
<td>0.00047</td>
</tr>
</tbody>
</table>
2018 D0 muon channel channel

Last channel at Tevatron

- 8.6 fb\(^{-1}\) RunII data
- PDF: NNPDF3.0
- Not previously included in D0 high precision plan
 - charge-eta dependence in muon momentum reconstruction
 - solved by special calibration similar to the electron channel

\[
\sin^2 \theta_{\text{eff}}^\ell = 0.23016
\]

\[
= \pm 0.00059\,(\text{stat}) \pm 0.00006\,(\text{syst}) \pm 0.00024\,(\text{PDF})
\]

\[
= 0.23016 \pm 0.00064
\]
2018 D0 combination

Best result from single hadron experiment

- full RunII data
- PDF: NNPDF3.0
- higher order correction based on zfitter calculation and ResBos event generator
- good agreement compared with world average

\[\sin^2 \theta^\ell_{\text{eff}} = 0.23095 \pm 0.00040 \]
\[= 0.23095 \pm 0.00035(\text{stat}) \]
\[\pm 0.00007(\text{syst}) \pm 0.00019(\text{PDF}) \]