

### Recent Highlights of SM $Z/\gamma^*$ production with the **ATLAS Experiment**

Manuella G. Vincter (Carleton University) on behalf of the ATLAS Collaboration

#### $Z/\gamma$ \*production in ATLAS at $\sqrt{s}=8$ , 13 TeV

- Z 3D differential cross sections
- $\sin^2\theta_{\rm eff}^{\ell}$  from angular coefficient A<sub>4</sub>
- τ polarisation in  $Z/\gamma^* \rightarrow ττ$  decays
- $Z\gamma \rightarrow vv\gamma$  cross section at 13 TeV







## Drell-Yan triple-differential cross section at √s=8TeV - I



At LO electroweak and perturbative QCD theory 3D Z cross section:



- Sensitivity of cross section to PDFs mainly from y<sub>n</sub> dependence: important to know PDFs!
- Terms linear in cos θ induce forward-backward asym  $A_{FB}$  (parity violation): access to  $\sin^2\theta_W$
- Differential cross section in 654 bins of  $m_{\ell\ell}$  (46 to 200GeV) x  $|y_{\ell\ell}|$  (0 to 3.6) x cos $\theta^*$  (-1 to +1)
- Unfolded with Bayesian method corrected to born level
- Systematic uncertainties classified as correlated or uncorrelated between bins and propagated

0.5





## Z production/decay angular Coefficients: pp $\rightarrow$ Z(/ $\gamma$ \*) $\rightarrow$ $\ell\ell$ , 8TeV



JHEP 08 (2016) 159

- Initial-state parton, final-state lepton spin correlations carry info about Z polarisation
- 5D differential cross section can be decomposed as 1+8 harmonic polynomials  $P_i$  (cos  $\theta$ ,  $\phi$ ), dependent on lepton polar  $\theta$ , azimuthal  $\phi$  multiplied by dimensionless angular coefficients  $A_i(p_T^Z, y^Z, m^Z)$  that depend on Z kinematics  $p_T^Z$ ,  $y^Z$ ,  $m^Z$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^{Z}\,\mathrm{d}y^{Z}\,\mathrm{d}m^{Z}\,\mathrm{d}\cos\theta\,\mathrm{d}\phi} = \frac{3}{16\pi}\frac{\mathrm{d}\sigma^{U+L}}{\mathrm{d}p_{\mathrm{T}}^{Z}\,\mathrm{d}y^{Z}\,\mathrm{d}m^{Z}} \ \left\{ (1+\cos^{2}\theta) + \sum_{i=0}^{7}\mathbf{A_{i}}(\mathbf{p_{\mathrm{T}}^{Z}},\mathbf{y^{Z}},\mathbf{m^{Z}}) \cdot \mathbf{P_{i}}(\cos\theta,\,\phi) \right\}.$$

- Z production dynamics factorised from Z decay kinematics
- $A_4$  (and  $A_3$ ) sensitive to  $\sin^2\theta_W$  but strongly reduced at LHC due to lack of knowledge of parent quark direction
- Sensitivity reduction strongest at low values of |y<sup>z</sup>|
  - enhanced importance for production at high |y<sup>z</sup>|
- Follow up: A<sub>i</sub> ATLAS publication at √s=8TeV, 20.2fb<sup>-1</sup>
- ee, μμ final states in 8x8 bins of (cos θ,φ)
  - CC: two leptons  $p_T^l > 25$ GeV in Central  $|\eta_\ell| < 2.4$
  - CF: Central e + Forward e  $(p_T^l > 20 \text{GeV}, |\eta_\ell| > 2.5)$ 
    - $\triangleright$  Unique reach adds sensitivity to  $\sin^2\theta_W!$







# Measurement of $\sin^2\theta_{eff}^{\ell}$ at $\sqrt{s}=8$ TeV: EW corrections

ATLAS-CONF-2018-037

- Hadron colliders tools for  $\sin^2\theta_{eff}^{\ell}$ : simulate in a LO EW scheme in effective Born approx. for given  $\sin^2\theta_{eff}^{\ell}$  different from on-mass-shell ( $\sin^2\theta_W = 1 m_W^2 / m_Z^2$ ), to account for EW corrs.
- Here: use EW form factors to assess impact of weak corrs to Born-like  $\sigma$  for  $\ell\ell$  production
  - Improved Born Approximation (similar methodology as at LEP)
    - per-event weight using TauSpinner framework and form factors from Dizet library
  - EW corrections: in terms of five complex (flavour dependent) form factors
    - At Z pole  $(\to \ell \ell)$  form factors  $K_Z^{\ell}$ . Ratio effective vector to axial-vector couplings:



$$\frac{v_l}{a_l} = 1 - 4 \cdot |q_f| \cdot K_Z^l \cdot \sin^2 \theta_W \quad \text{on-mass shell}$$

$$\sin^2 \theta_{\text{eff}}^{\ell}$$

 $\Delta A_4$ : including EW corrections (without and with boxes which break factorisation assumption) to POWHEG-BOX generator input: 0.23113

Shift of  $A_4=0.001 \rightarrow \text{shift of } \sin^2\theta_{\text{eff}}^{\ell}=20x10^{-5}$ 

EW corrections are important!



### $\sin^2\theta_{eff}^{\ell}$ at $\sqrt{s}=8$ TeV:

### predictions and mapping $A_4$ as $\sin^2\theta_{eff}^{\ell}$

ATLAS-CONF-2018-037

- PDF uncertainties dominate predictions of A<sub>4</sub>
- $A_4 \rightarrow \sin^2\theta_{eff}^{\ell}$ : linear parm, varied ±100x10<sup>-5</sup> around 0.23152 (PDG value) Analysis bin j  $A_{4,i}(\sin^2\theta_{\text{eff}}^{\ell}, \theta) = a_i(\theta) \times \sin^2\theta_{\text{eff}}^{\ell} + b_i(\theta)$
- Predicted  $A_4$  vs.  $\sin^2\theta_{eff}^{\ell}$  from DYTurbo (fast analytic integration NLO QCD+LO EW) corrected with tabulated EW corrs derived with per-event weight of TauSpinner and EW LO + QCD NLO (POWHEG-BOX)



- θ: systematic variations about nominal
  - Dominant uncertainty: PDF



e.g. vs m<sup>z</sup>

← CT10





# Measurement of $\sin^2\theta_{\rm eff}^{\ell}$ at $\sqrt{s}$ =8TeV: measurement - I

ATLAS-CONF-2018-037

| ee <sub>cc</sub> and μμ <sub>cc</sub> |                        |  |  |  |  |  |  |  |
|---------------------------------------|------------------------|--|--|--|--|--|--|--|
| m <sup>z</sup>                        | [70, 80, 100, 125] GeV |  |  |  |  |  |  |  |
| $ y^{Z} $                             | [0, 0.8, 1.6, 2.5]     |  |  |  |  |  |  |  |
| ee <sub>CF</sub>                      |                        |  |  |  |  |  |  |  |
| $m^{Z}$                               | [80,100] GeV           |  |  |  |  |  |  |  |
| y <sup>z</sup>                        | [1.6, 2.5, 3.6]        |  |  |  |  |  |  |  |

#### **RESULTS:**

- Main uncertainties: on  $A_4 \to data$  statistics, on interpretation of  $\sin^2\theta_{\rm eff}^{\ell} \to also$  PDFs
- Compatibility of  $\sin^2\theta_{\rm eff}^{\ell}$  in 20 measurements channels (9  $ee_{\rm CC}$  +9  $\mu\mu_{\rm CC}$  + 2 $ee_{\rm CF}$ )

#### Pulls of each measurement with respect to the most sensitive measurement: $ee_{CF}$ in |y|=2.5-3.6



# $\sin^2\theta_{\mathrm{eff}}^{\ell}$ measurement - H

#### ATLAS-CONF-2018-037

Result cross-checked using forward-backward asymmetry A<sub>FB</sub> vs. | y<sup>z</sup> |
 (from 3D Z cross section) blinded
 results for sin<sup>2</sup>θ<sub>eff</sub>

$$\frac{\mathrm{d}^3 \sigma}{\mathrm{d} m_{\ell\ell} \mathrm{d} y_{\ell\ell} \mathrm{d} \cos \theta^*}$$

- Check compatibility between the three analysis channels, expected and observed variations as a function of PDF set, and impact of the EW form factor corrections
  - All consistent!







0.05

0.04

ATLAS Preliminary

8 TeV, 20.2 fb<sup>-1</sup>, ee<sub>cc</sub> + μμcc

Theory

Theory

 $|\cos \theta| < 0.4$ 

 $0.4 < |\cos \theta| < 0.7$ 

ATLAS Preliminary

8 TeV, 20.2 fb<sup>-1</sup>, ee<sub>cc</sub> + μμcc

CF: m<sup>Z</sup>=80-91GeV



# Measurement of $\sin^2\theta_{eff}^{\ell}$ at $\sqrt{s}=8$ TeV: measurement - III

20.2 fb<sup>-1</sup>

ATLAS-CONF-2018-037

• Contributions of the different channels to the measurement of  $\sin^2\!\theta_{\rm eff}^{\ell}$ 

| recc   | $\mu\mu_{CC}$                               | $ee_{CF}$                                                                                                                                                                                                                        | $ee_{CC} + \mu\mu_{CC}$                                                                                                                         | $ee_{CC} + \mu\mu_{CC} + ee_{CF}$ | _                |
|--------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------|
| .23148 | 0.23123                                     | 0.23166                                                                                                                                                                                                                          | 0.23119                                                                                                                                         | 0.23140                           | _                |
|        |                                             |                                                                                                                                                                                                                                  | Uncertainties                                                                                                                                   |                                   |                  |
| 68     | 59                                          | 43                                                                                                                                                                                                                               | 49                                                                                                                                              | 36                                |                  |
| 48     | 40                                          | 29                                                                                                                                                                                                                               | 31                                                                                                                                              | 21 <b>X</b>                       | 10 <sup>-5</sup> |
| 48     | 44                                          | 32                                                                                                                                                                                                                               | 38                                                                                                                                              | 29                                | . •              |
|        |                                             | Uncerta                                                                                                                                                                                                                          | inties in measuremen                                                                                                                            | its                               |                  |
| 8      | 9                                           | 7                                                                                                                                                                                                                                | 6                                                                                                                                               | 4                                 |                  |
| 0      | 0                                           | 7                                                                                                                                                                                                                                | 0                                                                                                                                               | 5                                 |                  |
| 4      | 4                                           | 4                                                                                                                                                                                                                                | 4                                                                                                                                               | 3                                 |                  |
| 6      | 1                                           | 2                                                                                                                                                                                                                                | 2                                                                                                                                               | 1                                 |                  |
| 11     | 3                                           | 3                                                                                                                                                                                                                                | 2                                                                                                                                               | 4                                 |                  |
| 2      | 0                                           | 1                                                                                                                                                                                                                                | 1                                                                                                                                               | < 1                               |                  |
| 0      | 5                                           | 0                                                                                                                                                                                                                                | 1                                                                                                                                               | 2                                 |                  |
| 1      | 2                                           | 1                                                                                                                                                                                                                                | 1                                                                                                                                               | 2                                 |                  |
| 25     | 22                                          | 18                                                                                                                                                                                                                               | 16                                                                                                                                              | 12                                | _                |
|        |                                             | Uncer                                                                                                                                                                                                                            | tainties in predictions                                                                                                                         | 3                                 | _                |
| 37     | 35                                          | 22                                                                                                                                                                                                                               | 33                                                                                                                                              | 24                                |                  |
| 6      | 8                                           | 9                                                                                                                                                                                                                                | 5                                                                                                                                               | 6                                 |                  |
| 3      | 3                                           | 3                                                                                                                                                                                                                                | 3                                                                                                                                               | 3                                 | _                |
|        | 8<br>0<br>4<br>6<br>11<br>2<br>0<br>1<br>25 | 23148     0.23123       68     59       48     40       48     44       8     9       0     0       4     4       6     1       11     3       2     0       0     5       1     2       25     22       37     35       6     8 | 23148 0.23123 0.23166  68 59 43 48 40 29 48 44 32  Uncerta  8 9 7 0 0 7 4 4 4 4 6 1 2 11 3 3 2 0 1 0 5 0 1 2 1 25 22 18  Uncert  37 35 22 6 8 9 | Uncertainties   Uncertainties     | Color            |

- $ee_{CF}$  is most precise though it has only 1.5M events (compared to 13.5M  $ee_{CC}$  +  $\mu\mu_{CC}$ )
- Measurement uncertainty 36 x 10<sup>-5</sup>
  - data stat and PDF uncertainty roughly equal. MC stats next largest uncertainty.



### Measurement of $\sin^2\theta_{eff}^{\ell}$ at $\sqrt{s}=8\text{TeV}$ : measurement - IV

ATLAS-CONF-2018-037

 $\sin^2\theta_{\text{eff}}^{\ell} = 0.23140 \pm 0.00021(\text{stat.}) \pm 0.00024(\text{PDF}) \pm 0.00016(\text{syst.})$  (0.00036 tot)

Competitive measurement from a hadron collider that adds consistency to the landscape!





## τ polarisation in Z→ττ decays at √s=8TeV



Eur. Phys. J. C 78 (2018) 163

#### $\tau$ polarisation in Z/ $\gamma^*$ decays a measure of parity violation

- $Z/\gamma^* \rightarrow \tau\tau$ :  $\tau_{lep} \rightarrow e/\mu\nu\nu + \tau_{had} \rightarrow hadrons \nu$ ,  $m_{Z/\gamma^*} = 66-116GeV$
- $P_{\tau}$ : asymmetry for positive  $(\sigma_{+})$  or negative  $(\sigma_{-})$  helicity
- $\tau \rightarrow \rho \nu$ ,  $\rho \rightarrow \pi^{\pm} \pi^{o}$  has sensitivity. Also  $\tau \rightarrow h^{\pm} N \pi^{o} \nu$ .
- $_{}$  ψ carries info on  $_{}$  helicity  $_{}$  energy sharing between  $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$   $_{}$
- Reconstructed spectra affected by acceptance, object reconstruction, event selection etc...
- Dominant bkgs: W+jets and multijet production (from same-sign (SS) control region)
- Fit model: extended binned max likelihood fit to Y simultaneously in signal and SS regions
  - Uncertainties dominated by signal modeling and  $\tau_{\text{had}}$  identification



| Channel                                             | $P_{\tau}$ in mass-selected region                                                                                 |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| $	au_e$ – $	au_{ m had}$ $	au_\mu$ – $	au_{ m had}$ | $-0.20 \pm 0.02 \text{ (stat)} \pm 0.05 \text{ (syst)}$<br>$-0.13 \pm 0.02 \text{ (stat)} \pm 0.05 \text{ (syst)}$ |
| Combination                                         | $-0.14 \pm 0.02 \text{ (stat)} \pm 0.04 \text{ (syst)}$                                                            |
|                                                     |                                                                                                                    |

- Alpgen+Pythia6 with Tauola:
- $P_{\tau} = -0.1517 \pm 0.0014 \text{ (stat)} \pm 0.0013 \text{ (syst)}.$
- Use Y as discriminant for ττ final states from different helicity states



### **Z**γ production cross section:

 $Z\gamma \rightarrow vv\gamma$  at 13TeV

<u> ATLAS-CONF-2018-035</u>

See talk of Rustem Ospanov Thurs at 17:30 for aTGCs!

New

#### Analysis of $Z(\rightarrow vv)\gamma$

- 2015-2016@13TeV: 36.1fb-1
- Fiducial differential cross section vs. E<sub>T</sub><sup>γ</sup> (and E<sub>T</sub><sup>miss</sup>)

#### Signal and background:

- one isolated and well identified  $\gamma$  E<sub>T</sub>>150GeV
- Large E<sub>T</sub><sup>miss</sup> > 150 GeV (and E<sub>T</sub><sup>miss</sup> significance) for νν
- Inclusive: Njets≥0, exclusive: Njets=0 with anti-k<sub>t</sub> R=0.4
- Other requirements/vetos to reduce bkg
- Dominant bkg like  $W(\ell v)\gamma$  where  $\ell$  goes undetected
  - data-driven control regions where lepton veto or E<sub>T</sub><sup>miss</sup> significance inverted
  - S/B~3/2
- Dominant uncertainties come from γ energy scale (and jet energy scale for the exclusive measurement)
- Comparisons to NNLO MCFM and Sherpa (NNPDF30)
  - Good agreement with SM expectations







### **Summary**

#### Overview of SM $Z/\gamma^*$ production with ATLAS Experiment

- Drell–Yan triple-differential Z cross section and  $A_4$  coefficient at  $\sqrt{s}$ =8TeV
  - Precision provides unique insight into PDFs and sensitivity to  $\sin^2\theta_W$ !
  - $A_4$  coefficient used to extract  $\sin^2\theta_{eff}^{\ell}$  with competitive precision
- $\tau$  polarisation in  $Z/\gamma^* \rightarrow \tau \tau$  decays
  - Y variable: discrimination of final states with produced from different helicities
- $\mathbf{Z}(\rightarrow vv)\gamma$  fiducial differential cross section
  - Measurements in corners of phase space interesting to probe aTGCs

# Thanks

#### **Citations**

Z3D cross section Z angular coefficients  $\sin^2\theta_{\rm eff}^{\ell}$  from A<sub>4</sub> Tau polarisation  $Z(vv)\gamma$  cross section JHEP 12 (2017) 059 JHEP 08 (2016) 159 ATLAS-CONF-2018-037 EPJC 78 (2018) 163 ATLAS-CONF-2018-035



## Back up...





## $\sin^2\theta_{\rm eff}^{\ell}$ : some physics

#### ATLAS-CONF-2018-037

- $A_4$  cos θ is parity violating. Large variation of as a function of  $m_{\parallel}$  is mostly due to interference between the  $\gamma$  vector amplitude and Z axial-vector amplitude
- asymmetry due to the weak mixing angle from self-interference of the Z vector and axial vector amplitudes
  - small and ~ m<sub>II</sub> independent
- Dependence versus rapidity reflects the level of dilution of asymmetry due to ambiguity in the knowledge of incoming valence quark direction which is derived from the direction of Z longitudinal boost







### $sin^2\theta_{eff}^{\ell}$ at $\sqrt{s}=8TeV$ : reco cos θ, φ at Z pole





# Measurement of $\sin^2\theta_{\rm eff}^{\ell}$ at $\sqrt{s}=8$ TeV: "Folding" Methodology

JHEP 08 (2016) 159

ATLAS-CONF-2018-037

#### Lepton selection requirements break the angular decomposition

- Extract reference coefficients A<sub>i</sub> and unpolarised cross section σ from signal MC (POWHEG+PYTHIA8) in full lepton phase space in each measurement bin
- Using reference values, reweigh MC to isotropic (flat) to remove all Z polarisation info
- Apply selection requirements, corrections etc...
- Get nine separate polynomial templates for each measurement bin by weighting by P<sub>i</sub> terms
  - 4D templates (cos  $\theta$ ,  $\phi$ ,  $m_{\ell\ell}$ ,  $y_{\ell\ell}$ ) that encompass all lepton selection efficiencies/migrations



- Number of expected events: LH based on signal & bkg templates with A<sub>i</sub>, σ as normalisations
  - varied templates reflecting systematic uncertainties (nuisance parameters NP:  $\theta$ )
- Compare data and expectations: LH built as product of Poisson N<sub>exp</sub> and N<sub>data</sub>



Background

MC stat.

# $\sin^2\theta_{\rm eff}^{\ell}$ at $\sqrt{s}=8$ TeV: measurements

0.0008

0.0089

0.0040

0.0180

< 0.0001

0.0007

| ATLA                                    | <u> </u>      | <u> 18-037</u> |           | . <b>IV</b> | leasu     | red A     | 1             |           |           |           |
|-----------------------------------------|---------------|----------------|-----------|-------------|-----------|-----------|---------------|-----------|-----------|-----------|
| $m^{\ell\ell}$ (GeV)                    |               | 70 - 80        |           | 80 – 100    |           |           |               | 100 – 125 |           |           |
| $ y^{\ell\ell} $                        | 0 - 0.8       | 0.8 – 1.6      | 1.6 - 2.5 | 0 - 0.8     | 0.8 – 1.6 | 1.6 – 2.5 | 2.5 - 3.6     | 0 - 0.8   | 0.8 – 1.6 | 1.6 - 2.5 |
| Central value                           | -0.0681       | -0.2684        | -0.5087   | 0.0195      | 0.0448    | 0.0923    | 0.1445        | 0.0975    | 0.3311    | 0.6722    |
|                                         | Uncertainties |                |           |             | Uncert    | tainties  | Uncertainties |           |           |           |
| Total                                   | 0.0176        | 0.0199         | 0.0391    | 0.0015      | 0.0016    | 0.0026    | 0.0046        | 0.0086    | 0.0099    | 0.0234    |
| Stat.                                   | 0.0149        | 0.0160         | 0.0324    | 0.0013      | 0.0013    | 0.0021    | 0.0037        | 0.0073    | 0.0079    | 0.0188    |
| Syst.                                   | 0.0093        | 0.0119         | 0.0220    | 0.0008      | 0.0008    | 0.0014    | 0.0027        | 0.0045    | 0.0062    | 0.0139    |
| PDF (meas.)                             | 0.0004        | 0.0044         | 0.0046    | 0.0001      | 0.0002    | 0.0004    | 0.0008        | 0.0009    | 0.0015    | 0.0050    |
| $p_{\mathrm{T}}^{\mathbf{Z}}$ modelling | 0.0028        | 0.0031         | 0.0058    | 0.0003      | 0.0003    | 0.0004    | 0.0007        | 0.0014    | 0.0015    | 0.0033    |
| Leptons                                 | 0.0044        | 0.0063         | 0.0095    | 0.0004      | 0.0003    | 0.0005    | 0.0010        | 0.0019    | 0.0040    | 0.0071    |

0.0001

0.0007

Measured  $\sin^2\theta_{eff}^{\ell}$  for different PDFs

< 0.0001

0.0083

| ı             | H                        | I                             | I       | I       |              |  |  |  |  |  |
|---------------|--------------------------|-------------------------------|---------|---------|--------------|--|--|--|--|--|
| PDF set       | CT10 CT14 MMHT14 NNPDF31 |                               | NNPDF31 |         |              |  |  |  |  |  |
| Central value | 0.23118                  | 0.23141                       | 0.23140 | 0.23146 |              |  |  |  |  |  |
|               | U                        | Uncertainties in measurements |         |         |              |  |  |  |  |  |
| Total         | 40                       | 37                            | 36      | 38      | <b>10</b> -5 |  |  |  |  |  |
| Stat.         | 21                       | 21                            | 21      | 21      | 10 3         |  |  |  |  |  |
| Syst.         | 32                       | 31                            | 29      | 31      |              |  |  |  |  |  |

< 0.0001

0.0012

0.0001

0.0023

0.0006

0.0038

0.0015

0.0042

0.0023

0.0102



## $\sin^2\theta_{\rm eff}^{\ell}$ at $\sqrt{s}=8$ TeV: $A_4$ predictions

ATLAS-CONF-2018-037

### **Predicted A<sub>4</sub>**

| $m^{\ell\ell}$ (GeV)                            | 70 – 80       |           |           | 80 – 100                  |           |           |           | 100 – 125     |           |           |
|-------------------------------------------------|---------------|-----------|-----------|---------------------------|-----------|-----------|-----------|---------------|-----------|-----------|
| $ y^{\ell\ell} $                                | 0 - 0.8       | 0.8 – 1.6 | 1.6 - 2.5 | 0 - 0.8                   | 0.8 – 1.6 | 1.6 - 2.5 | 2.5 - 3.6 | 0 - 0.8       | 0.8 - 1.6 | 1.6 - 2.5 |
| Central value (NNLO QCD)                        | -0.0870       | -0.2907   | -0.5970   | 0.0144                    | 0.0471    | 0.0928    | 0.1464    | 0.1045        | 0.3444    | 0.6807    |
| $\Delta A_4$ (NNLO - NLO QCD)                   | 0.0003        | 0.0010    | 0.0021    | -0.0001                   | -0.0005   | -0.0009   | -0.0015   | -0.0007       | -0.0022   | -0.0041   |
| $\Delta A_4$ (EW)                               | 0.0008        | 0.0028    | 0.0056    | 0.0002                    | 0.0007    | 0.0015    | 0.0026    | -0.0008       | -0.0026   | -0.0048   |
| $\Delta \sin^2 \theta_{\text{eff}}^{\ell}$ (EW) | 0.00129       | 0.00130   | 0.00133   | 0.00024                   | 0.00024   | 0.00025   | 0.00026   | -0.00120      | -0.00123  | -0.00119  |
|                                                 | Uncertainties |           |           | certainties Uncertainties |           |           |           | Uncertainties |           |           |
| Total                                           | 0.0035        | 0.0094    | 0.0137    | 0.0007                    | 0.0017    | 0.0021    | 0.0021    | 0.0040        | 0.0102    | 0.0140    |
| PDF                                             | 0.0034        | 0.0092    | 0.0127    | 0.0007                    | 0.0016    | 0.0020    | 0.0019    | 0.0039        | 0.0100    | 0.0131    |
| QCD scales                                      | 0.0006        | 0.0019    | 0.0052    | 0.0003                    | 0.0003    | 0.0004    | 0.0008    | 0.0005        | 0.0022    | 0.0049    |



### τ polarisation in $Z\rightarrow$ ττ decays

Eur. Phys. J. C 78 (2018) 163

- τ→πν has highest sensitivity
  - Angle θ
- τ→ρν, ρ→π<sup>±</sup>π<sup>o</sup> has higher Br.
   Sensitivity diluted due to mixing of long. and transv. polarisation of ρ
  - Angle ψ also carries info



- θ cannot be measured at LHC
- Angle  $\psi$  related to the energy sharing between  $\pi^{\pm}$  and  $\pi^{o}$  x

$$\Upsilon_{\text{theory}} = \frac{E_{\pi^{\pm}} - E_{\pi^{0}}}{E_{\pi^{\pm}} + E_{\pi^{0}}}.$$

Proxy: 
$$\Upsilon = \frac{E_{\mathrm{T}}^{\pi^{\pm}} - E_{\mathrm{T}}^{h^0}}{E_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}}} = 2 \frac{p_{\mathrm{T}}^{\mathrm{track}}}{E_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}}} - 1,$$







### **TGC**

### $Z\gamma \rightarrow vv\gamma$ , production cross section 13TeV

- Test EW sector: gauge boson self-interactions VVV
  - anomalous Triple Gauge Couplings (aTGC)



#### aTGC methodology

- Measure diboson kinematic distributions or cross sections vs. variables sensitive to aTGCs
  - Presence of aTGC distorts shape

#### Measurement $Z\gamma \rightarrow vv\gamma$ in the SM

- in SM: either through γ emission by initial state quarks or through quark/gluon fragmentation into γ
  - TGC forbidden at tree level
  - Yields of Z with high  $E_T$  from the exclusive (zero-jet) selection are used to set aTGC limits
- Present here: fiducial differential cross section vs. E<sub>⊤</sub>