Recent Highlights of SM Z/ γ^{*} production with the ATLAS Experiment

Manuella G. Vincter (Carleton University) on behalf of the ATLAS Collaboration

Drell- Yan triple-differential cross section at $\sqrt{ } \mathrm{s}=8 \mathrm{TeV}$ - I

LHEP 12 (2017) 059

- At LO electroweak and perturbative QCD theory 3D Z cross section:

$$
\begin{gathered}
\frac{\mathrm{d}^{3} \sigma}{\mathrm{~d} m_{\ell \ell} \mathrm{d} y_{\ell \ell} \mathrm{d} \cos \theta^{*}}= \\
q \bar{q} \rightarrow Z / \gamma^{*} \rightarrow \ell^{+} \ell^{-}
\end{gathered}
$$

(θ^{*} : decay angle in CS frame)

$$
\begin{aligned}
& \frac{\pi c}{3 m} \\
& \\
& \hline
\end{aligned}
$$

$$
\begin{gathered}
\text { V-A lepton\&quark } \\
\text { couplings, } \sin ^{2} \theta_{\mathrm{w}} \\
{\left[\frac{3}{8} A\left(1+\cos ^{2} \theta\right)+B \cos \theta\right]}
\end{gathered}
$$

- Sensitivity of cross section to PDFs mainly from y_{μ} dependence: important to know PDFs!
- Terms linear in $\cos \theta$ induce forward-backward asym $A_{F B}$ (parity violation): access to $\sin ^{2} \theta_{\mathrm{w}}$
- Differential cross section in 654 bins of $m_{e l}(46$ to 200 GeV$) \times\left|y_{e l}\right|(0$ to 3.6$) \times \cos \theta^{*}(-1$ to +1$)$
- Unfolded with Bayesian method corrected to born level
- Systematic uncertainties classified as correlated or uncorrelated between bins and propagated

Z production/ decay angular
 Coefficients: $\mathbf{p p} \rightarrow \mathbf{Z}\left(/ \gamma^{*}\right) \rightarrow \ell, 8 T e V$

LHC: pp
Tevatron: $\mathrm{p} \overline{\mathrm{p}}$

LHEP 08 (2016) 159

- Initial-state parton, final-state lepton spin correlations carry info about Z polarisation
- 5 D differential cross section can be decomposed as $1+8$ harmonic polynomials $\mathrm{P}_{\mathrm{i}}(\cos \theta, \varphi)$, dependent on lepton polar θ, azimuthal φ multiplied by dimensionless angular coefficients $\mathrm{A}_{\mathrm{i}}\left(\mathrm{p}_{\mathrm{T}}^{\mathrm{Z}}, \mathrm{y}^{\mathrm{Z}}, \mathrm{m}^{\mathrm{Z}}\right)$ that depend on Z kinematics $\mathrm{p}_{\mathrm{T}}^{\mathrm{Z}}, \mathrm{y}^{\mathrm{Z}}, \mathrm{m}^{\mathrm{Z}}$
$\frac{\mathrm{d} \sigma}{\mathrm{d} p_{\mathrm{T}}^{Z} \mathrm{~d} y^{Z} \mathrm{~d} m^{Z} \mathrm{~d} \cos \theta \mathrm{~d} \phi}=\frac{3}{16 \pi} \frac{\mathrm{~d} \sigma^{U+L}}{\mathrm{~d} p_{\mathrm{T}}^{Z} \mathrm{~d} y^{Z} \mathrm{~d} m^{Z}}\left\{\left(1+\cos ^{2} \theta\right)+\sum_{i=0}^{7} \mathrm{~A}_{\mathrm{i}}\left(\mathrm{p}_{\mathrm{T}}^{\mathrm{Z}}, \mathrm{y}^{\mathrm{Z}}, \mathrm{m}^{\mathrm{Z}}\right) \cdot \mathrm{P}_{\mathrm{i}}(\cos \theta, \varphi)\right\}$.
- $\quad Z$ production dynamics factorised from Z decay kinematics
- A_{4} (and A_{3}) sensitive to $\sin ^{2} \theta_{w}$ but strongly reduced at LHC due to lack of knowledge of parent quark direction

A_{i}	Couplings	Non-zer
A_{3}	$\left(\begin{array}{lll}v_{l} & a_{l}\end{array}\right) \cdot\left(\begin{array}{ll}v_{q} & a_{q}\end{array}\right)$	$\mathcal{O}\left(\alpha_{S}^{1}\right)$
A_{4}	$\sim \sin ^{2} \theta_{\mathrm{w}}$	$\mathcal{O}\left(\alpha_{S}^{0}\right)$

- Sensitivity reduction strongest at low values of $\left|y^{\mathrm{z}}\right|$
- enhanced importance for production at high $\left|y^{Z}\right|$
- Follow up: A_{i} ATLAS publication at $\sqrt{ } \mathrm{s}=8 \mathrm{TeV}, 20.2 \mathrm{fb}^{-1}$
- ee, $\mu \mu$ final states in 8×8 bins of $(\cos \theta, \varphi)$
- CC: two leptons $\mathrm{p}_{\mathrm{T}}^{l}>25 \mathrm{GeV}$ in Central $\left|\eta_{\ell}\right|<2.4$
- CF: Central e + Forward e ($\mathrm{p}_{\mathrm{T}}^{l}>20 \mathrm{GeV},\left|\eta_{\ell}\right|>2.5$)
$>$ Unique reach adds sensitivity to $\sin ^{2} \theta_{W}$!

Measurement of $\sin ^{2} \theta_{\mathrm{eff}}^{\ell}$ at $\sqrt{ } \mathrm{s}=8 \mathrm{TeV}$: EW corrections

ATLAS-CONF-2018-037

- Hadron colliders tools for $\sin ^{2} \theta_{\text {eff: }}^{\ell}$: simulate in a LO EW scheme in effective Born approx. for given $\sin ^{2} \theta_{\text {eff }}^{\ell}$ different from on-mass-shell $\left(\sin ^{2} \theta_{\mathrm{W}}=1-\mathrm{m}_{\mathrm{W}}^{2} / \mathrm{m}_{\mathrm{Z}}^{2}\right)$, to account for EW corrs.
- Here: use EW form factors to assess impact of weak corrs to Born-like σ for $\ell \ell$ production
- Improved Born Approximation (similar methodology as at LEP)
- per-event weight using TauSpinner framework and form factors from Dizet library
- EW corrections: in terms of five complex (flavour dependent) form factors
- At Z pole $(\rightarrow \ell)$ form factors K_{Z}^{ℓ}. Ratio effective vector to axial-vector couplings:

- $\quad \Delta \mathrm{A}_{4}$: including EW corrections (without and with boxes which break factorisation assumption) to POWHEG-BOX generator input: 0.23113
- Shift of $A_{4}=0.001 \rightarrow$ shift of $\sin ^{2} \theta_{\text {eff }}^{\ell}=20 \times 10^{-5}$
- EW corrections are important!
$\sin ^{2} \theta_{\text {eff }}^{\ell}$ at $\sqrt{ } \mathrm{s}=8 \mathrm{TeV}$: predictions and mapping A_{4} as $\sin ^{2} \theta_{\text {eff }}^{\ell}$
e.g. vs m^{2}

ATLAS-CONF-2018-037

- PDF uncertainties dominate predictions of A_{4}
- $A_{4} \rightarrow \sin ^{2} \theta_{\text {eff }}^{\ell}$: linear parm, varied $\pm 100 \times 10^{-5}$ around 0.23152 (PDG value) Analysis bin j $A_{4, j}\left(\sin ^{2} \theta_{\mathrm{eff}}^{\ell}, \theta\right)=a_{j}(\theta) \times \sin ^{2} \theta_{\mathrm{eff}}^{\ell}+b_{j}(\theta)$.
- Predicted A_{4} vs. $\sin ^{2} \theta_{\text {eff }}^{\ell}$ from DYTurbo (fast analytic integration NLO QCD+LO EW) corrected with tabulated EW corrs derived with per-event weight of TauSpinner and EW LO + QCD NLO (POWHEG-BOX)

- θ : systematic variations about nominal
- Dominant uncertainty: PDF

Measurement of $\sin ^{2} \theta_{\mathrm{eff}}^{\ell}$ at $\sqrt{ } \mathrm{s}=8 \mathrm{TeV}$: measurement -I

m^{2}	$[70,80,100,125] \mathrm{GeV}$
$\left\|\mathrm{y}^{2}\right\|$	$[0,0.8,1.6,2.5]$

RESULTS:

m^{2}	$[80,100] \mathrm{GeV}$
$\left\|y^{2}\right\|$	$[1.6,2.5,3.6]$

- Main uncertainties: on $\mathrm{A}_{4} \rightarrow$ data statistics, on interpretation of $\sin ^{2} \theta_{\text {eff }}^{\ell} \rightarrow$ also PDFs
- Compatibility of $\sin ^{2} \theta_{\text {eff }}^{\ell}$ in 20 measurements channels ($9 \mathrm{ee}_{\mathrm{CC}}+9 \mu \mu_{\mathrm{CC}}+2 \mathrm{ee}_{\mathrm{CF}}$)

Pulls of each measurement with respect to the most sensitive measurement: $e^{\text {CF }}$ in $|y|=2.5-3.6$

ATLAS Preliminary $8 \mathrm{TeV}, 20.2 \mathrm{fb}^{-1}$

$\sin ^{2} \theta_{\mathrm{eff}}^{\ell}$ measurement - | |

ATLAS-CONF-2018-037

- Result cross-checked using forwardbackward asymmetry $\mathbf{A F B}_{\text {FB }}$ vs. | y $\mathbf{z} \mid$ (from 3D Z cross section) blinded results for $\sin ^{2} \theta_{\text {eff }}^{\ell}$

$$
\frac{\mathrm{d}^{3} \sigma}{\mathrm{~d} m_{\ell \ell} \mathrm{d} y_{\ell \ell} \mathrm{d} \cos \theta^{*}}
$$

- Check compatibility between the three analysis channels, expected and observed variations as a function of PDF set, and impact of the EW form factor corrections
- All consistent!

A $_{\text {FB }}$ VS. $\mid y^{\mathbf{Z}}$

Data Theory (NNLOJET)
$\begin{array}{ll}\boldsymbol{\psi} & |\cos \theta|<0.4 \\ \boldsymbol{\eta} & 0.4<|\cos \theta|<0.7 \\ \boldsymbol{\eta} & |\cos \theta|>0.7\end{array}$

Measurement of $\sin ^{2} \theta_{\mathrm{eff}}^{\ell}$ at $\sqrt{s}=8 \mathrm{TeV}$: measurement - \| \|

- Contributions of the different channels to the measurement of $\sin ^{2} \theta_{\text {eff }}^{\ell}$

Channel	$e e_{C C}$	$\mu \mu_{C C}$	$e e_{C F}$	$e e_{C C}+\mu \mu_{C C}$	$e e_{C C}+\mu \mu_{C C}+e e_{C F}$
Central value	0.23148	0.23123	0.23166	0.23119	0.23140
	Uncertainties				
Total	68	59	(43)	49	36
Stat.	48	40	,	31	21 X
Syst.	48	44	32	38	29 X
	Uncertainties in measurements				
PDF (meas.)	8	9	7	6	4
$p_{\mathrm{T}}^{\mathrm{Z}}$ modelling	0	0	7	0	5
Lepton scale	4	4	4	4	3
Lepton resolution	6	1	2	2	1
Lepton efficiency	11	3	3	2	4
Electron charge misidentification	2	0	1	1	<1
Muon sagitta bias	0	5	0	1	2
Background	1	2	1	1	2
MC. stat.	25	22	18	16	12
	Uncertainties in predictions				
MHT) ${ }^{\text {PDF (predictions) }}$	37	35	22	33	24
QCD scales	6	8	9	5	6
EW corrections	3	3	3	3	3

- $\mathrm{ee}_{\text {CF }}$ is most precise though it has only 1.5 M events (compared to $13.5 \mathrm{M} \mathrm{ee} \mathrm{e}_{\mathrm{CC}}+\mu \mu_{\mathrm{CC}}$)
- Measurement uncertainty 36×10^{-5}
- data stat and PDF uncertainty roughly equal. MC stats next largest uncertainty.

Measurement of $\sin ^{2} \theta_{\text {eff }}^{\ell}$ at $\sqrt{ } \mathbf{s}=8 \mathrm{TeV}$: measurement - IV

ATLAS-CONF-2018-037
$\sin ^{2} \theta_{\text {eff }}^{\ell}=0.23140 \pm 0.00021$ (stat.) ± 0.00024 (PDF) ± 0.00016 (syst.) (0.00036 tot)

- Competitive measurement from a hadron collider that adds consistency to the landscape!

ATLAS Preliminary

τ polarisation in $\mathrm{Z} \rightarrow \tau \tau$ decays at $\sqrt{ } \mathrm{s}=8 \mathrm{TeV}$

Eur. Phys. /. C 78 (2018) 163
τ polarisation in Z / γ^{*} decays a measure of parity violation

- $Z / \gamma^{*} \rightarrow \tau \tau: \tau_{\text {ep }} \rightarrow \mathrm{e} / \mu v \nu+\tau_{\text {had }} \rightarrow$ hadrons $v, \mathrm{~m}_{\mathrm{z}_{/} \gamma^{*}}=66-116 \mathrm{GeV}$
- P_{τ} : asymmetry for positive (σ_{+}) or negative (σ_{-}) helicity

- $\tau \rightarrow \rho v, \rho \rightarrow \pi^{ \pm} \pi^{0}$ has sensitivity. Also $\tau \rightarrow h^{ \pm} N \pi^{0} v$.
- ψ carries info on τ helicity \propto energy sharing between $\pi^{ \pm} \& \pi^{0}$

$$
P_{\tau}=\frac{\sigma_{+}-\sigma_{-}}{\sigma_{+}+\sigma_{-}}
$$

- Reconstructed spectra affected by acceptance, object reconstruction, event selection etc...
- Dominant bkgs: W+jets and multijet production (from same-sign (SS) control region)
- Fit model: extended binned max likelihood fit to Y simultaneously in signal and SS regions
- Uncertainties dominated by signal modeling and $\tau_{\text {had }}$ identification

- Alpgen+Pythia6 with Tauola: $P_{\tau}=-0.1517 \pm 0.0014$ (stat) ± 0.0013 (syst).
- Use Y as discriminant for $\tau \tau$ final states from different helicity states
Z_{γ} production cross section: $Z_{\gamma} \rightarrow v v \gamma$ at 13 TeV

ATLAS-CONF-2018-035
Analysis of $\mathbf{Z}(\rightarrow v v) \gamma$

- 2015-2016@13TeV : 36.1fb-1
- Fiducial differential cross section vs. $\mathrm{E}_{T^{\gamma}}$ (and E_{T} miss)

Signal and background:

- one isolated and well identified $\gamma \mathrm{E}_{\mathrm{T}}>150 \mathrm{GeV}$
- Large $E_{T}{ }^{\text {miss }}>150 \mathrm{GeV}$ (and $E_{T}{ }^{\text {miss }}$ significance) for $v v$
- Inclusive: Njets ≥ 0, exclusive: Njets=0 with anti- k_{t} R=0.4
- Other requirements/vetos to reduce bkg
- Dominant bkg like $\mathrm{W}(\ell v) \gamma$ where ℓ goes undetected
- data-driven control regions where lepton veto or E_{T} miss significance inverted
- $\mathrm{S} / \mathrm{B} \sim 3 / 2$
- Dominant uncertainties come from γ energy scale (and jet energy scale for the exclusive measurement)
- Comparisons to NNLO MCFM and Sherpa (NNPDF30)
- Good agreement with SM expectations

Summary

Overview of SM Z/ γ^{*} production with ATLAS Experiment

- Drell-Yan triple-differential Z cross section and A_{4} coefficient at $\sqrt{ } s=8 T e V$
- Precision provides unique insight into PDFs and sensitivity to $\sin ^{2} \theta_{\mathrm{W}}$!
- A_{4} coefficient used to extract $\sin ^{2} \theta_{\text {eff }}^{\ell}$ with competitive precision
- τ polarisation in $\mathrm{Z} / \gamma^{*} \rightarrow \tau \tau$ decays
- Y variable: discrimination of final states with produced from different helicities
- $Z(\rightarrow \nu \nu) \gamma$ fiducial differential cross section
- Measurements in corners of phase space interesting to probe aTGCs

Citations

Z3D cross section Z angular coefficients $\sin ^{2} \theta_{\text {eff }}^{\ell}$ from A_{4} Tau polarisation $\mathrm{Z}(v v) \gamma$ cross section

LHEP 12 (2017) 059
LHEP 08 (2016) 159 ATLAS-CONF-2018-037
EP/C 78 (2018) 163
ATLAS-CONF-2018-035

Back up...

$\sin ^{2} \theta_{\text {eff }}^{\ell}$: some physics

ATLAS-CONF-2018-037

- $A_{4} \cos \theta$ is parity violating. Large variation of as a function of $m_{\| l}$ is mostly due to interference between the γ vector amplitude and Z axial-vector amplitude
- asymmetry due to the weak mixing angle from self-interference of the Z vector and axial vector amplitudes
- small and $\sim m_{\| l}$ independent
- Dependence versus rapidity reflects the level of dilution of asymmetry due to ambiguity in the knowledge of incoming valence quark direction which is derived from the direction of Z longitudinal boost

$\sin ^{2} \theta_{\text {eff }}^{\ell}$ at $\sqrt{ }=8$ TeV: reco $\cos \theta, \varphi$ at Z pole

Measurement of $\sin ^{2} \theta_{\mathrm{eff}}^{\ell}$ at $\sqrt{ } \mathrm{s}=8 \mathrm{TeV}$: "Folding" Methodology

LHEP 08 (2016) 159 ATLAS-CONF-2018-031
Lepton selection requirements break the angular decomposition

- Extract reference coefficients $A_{;}$and unpolarised cross section σ from signal MC (POWHEG+PYTHIA8) in full lepton phase space in each measurement bin
- Using reference values, reweigh MC to isotropic (flat) to remove all Z polarisation info
- Apply selection requirements, corrections etc...
- Get nine separate polynomial templates for each measurement bin by weighting by P_{i} terms
- 4D templates $\left(\cos \theta, \varphi, \mathrm{m}_{\ell} \mathrm{y}_{\ell}\right)$ that encompass all lepton selection efficiencies/migrations

- Number of expected events: LH based on signal \& bkg templates with $\mathrm{A}_{\mathrm{i}}, \sigma$ as normalisations
- varied templates reflecting systematic uncertainties (nuisance parameters NP: θ)
- Compare data and expectations: LH built as product of Poisson $N_{\exp }$ and $N_{\text {data }}$

$\sin ^{2} \theta_{\text {eff }}^{\ell}$ at $\sqrt{ } s=8 T e V:$ measurements

ATLAS-CONF-2018-037
Measured A_{4}

$m^{\ell \ell}(\mathrm{GeV})$	$70-80$			80-100				100-125		
$\left\|y^{\ell \ell}\right\|$	0-0.8	0.8-1.6	$1.6-2.5$	0-0.8	0.8-1.6	1.6-2.5	2.5-3.6	0-0.8	0.8-1.6	1.6-2.5
Central value	-0.0681	-0.2684	-0.5087	0.0195	0.0448	0.0923	0.1445	0.0975	0.3311	0.6722
	Uncertainties			Uncertainties				Uncertainties		
Total	0.0176	0.0199	0.0391	0.0015	0.0016	0.0026	0.0046	0.0086	0.0099	0.0234
Stat.	0.0149	0.0160	0.0324	0.0013	0.0013	0.0021	0.0037	0.0073	0.0079	0.0188
Syst.	0.0093	0.0119	0.0220	0.0008	0.0008	0.0014	0.0027	0.0045	0.0062	0.0139
PDF (meas.)	0.0004	0.0044	0.0046	0.0001	0.0002	0.0004	0.0008	0.0009	0.0015	0.0050
$p_{\mathrm{T}}^{\mathrm{Z}}$ modelling	0.0028	0.0031	0.0058	0.0003	0.0003	0.0004	0.0007	0.0014	0.0015	0.0033
Leptons	0.0044	0.0063	0.0095	0.0004	0.0003	0.0005	0.0010	0.0019	0.0040	0.0071
Background	< 0.0001	0.0008	0.0040	< 0.0001	0.0001	< 0.0001	0.0001	0.0006	0.0015	0.0023
MC stat.	0.0083	0.0089	0.0180	0.0007	0.0007	0.0012	0.0023	0.0038	0.0042	0.0102

Measured $\sin ^{2} \theta_{\text {eff }}^{\ell}$ for different PDFs	PDF set	CT10	CT14	MMHT14	NNPDF31
	Central value	0.23118	0.23141	0.23140	0.23146
		Uncertainties in measurements			
	Total	40	37	36	38
	Stat.	21	21	21	21
	Syst.	32	31	29	31

$\sin ^{2} \theta_{\text {eff }}^{\ell}$ at $\sqrt{s}=8 \mathrm{TeV}: \mathrm{A}_{4}$ predictions

ATLAS-CONF-2018-037

Predicted \mathbf{A}_{4}

$m^{\ell \ell}(\mathrm{GeV})$	70-80			$80-100$				100-125		
$\left\|y^{\ell \ell}\right\|$	0-0.8	0.8-1.6	1.6-2.5	0-0.8	0.8-1.6	1.6-2.5	2.5-3.6	0-0.8	0.8-1.6	$1.6-2.5$
Central value (NNLO QCD)	-0.0870	-0.2907	-0.5970	0.0144	0.0471	0.0928	0.1464	0.1045	0.3444	0.6807
ΔA_{4} (NNLO - NLO QCD)	0.0003	0.0010	0.0021	-0.0001	-0.0005	-0.0009	-0.0015	-0.0007	-0.0022	-0.0041
ΔA_{4} (EW)	0.0008	0.0028	0.0056	0.0002	0.0007	0.0015	0.0026	-0.0008	-0.0026	-0.0048
$\Delta \sin ^{2} \theta_{\text {eff }}^{\ell}$ (EW)	0.00129	0.00130	0.00133	0.00024	0.00024	0.00025	0.00026	-0.00120	-0.00123	-0.00119
	Uncertainties			Uncertainties				Uncertainties		
Total	0.0035	0.0094	0.0137	0.0007	0.0017	0.0021	0.0021	0.0040	0.0102	0.0140
PDF	0.0034	0.0092	0.0127	0.0007	0.0016	0.0020	0.0019	0.0039	0.0100	0.0131
QCD scales	0.0006	0.0019	0.0052	0.0003	0.0003	0.0004	0.0008	0.0005	0.0022	0.0049

τ polarisation in $\mathrm{Z} \rightarrow \tau \tau$ decays

Eur. Phys. /. C 78 (2018) 163

- $\tau \rightarrow \pi \nu$ has highest sensitivity
- Angle θ
- $\tau \rightarrow \rho v, \rho \rightarrow \pi^{ \pm} \pi^{0}$ has higher Br .

Sensitivity diluted due to mixing of long. and transv. polarisation of ρ

- Angle ψ also carries info

- $\quad \theta$ cannot be measured at LHC
- Angle ψ related to the energy sharing between $\pi^{ \pm}$and $\pi^{0} \mathrm{x}$
$\Upsilon_{\text {theory }}=\frac{E_{\pi^{ \pm}}-E_{\pi^{0}}}{E_{\pi^{ \pm}}+E_{\pi^{0}}}$.
Proxy: $\quad \Upsilon=\frac{E_{\mathrm{T}}^{\pi^{ \pm}}-E_{\mathrm{T}}^{h^{0}}}{E_{\mathrm{T}}^{\tau_{\text {had-vis }}}}=2 \frac{p_{\mathrm{T}}^{\text {track }}}{E_{\mathrm{T}}^{\tau_{\text {had-vis }}}-1,}$

TGC

$Z_{\gamma} \rightarrow v v \gamma$, production cross section 13TeV

- Test EW sector: gauge boson self-interactions WW
- anomalous Triple Gauge Couplings (aTGC)

aTGC methodology

- Measure diboson kinematic distributions or cross sections vs. variables sensitive to aTGCs
- Presence of aTGC distorts shape

Measurement $Z_{\gamma} \rightarrow v v \gamma$ in the $\mathbf{S M}$

- in SM: either through γ emission by initial state quarks or through quark/gluon fragmentation into γ
- TGC forbidden at tree level Yields of Z with high E_{T} from the exclusive (zero-jet) selection are used to set aTGC limits
- Present here: fiducial differential cross section vs. E_{T}

