

Electroweak Physics at CEPC

Zhijun Liang

Institute of High Energy Physics, Chinese Academy of Science

ICHEP 2018, Korea, Seoul, July 6th

Outline

- Introduction to CEPC
- W physics
- Z pole physics

Introduction to CEPC

- CEPC is Higgs Factory (E_{cms}=240GeV, 10⁶ Higgs)
- CEPC have good potential in electroweak precision physics at Z pole.
 - L=1.6 (3.2) X 10^{35} cm⁻²s⁻¹ , 10^{12} Z boson (tera-Z)
- WW threshold scan runs are also expected.
 - Total luminosity 2.5 ab⁻¹,
 - 14M WW events

Electroweak Physics at CEPC, ICHEP2018

CEPC detector

- ILD-like design with some modification for circular collider
 - No Power-pulsing
- Tracking system (Vertex detector, TPC detector, 3.0T magnet)
 - Expected Tracking resolution : $\delta(1/Pt) \sim 2*10-5(GeV-1)$
- Particle Flow Algorithm (PFA) based
 - Expected jet energy resolution : σE/E ~ 0.3/VE

Outline

- Introduction to CEPC
- W physics
- Z pole physics

Motivation of W mass measurement

- CEPC have very good potential in electroweak physics.
- Precision measurement is important
 - It constrain new physics beyond the standard model.
 - Eg: Radiative corrections of the W or Z boson is sensitive to new physics

Eur.Phys.J. C78 (2018) no.5, 426

W mass measurement

Two approaches to measure W mass:

Direct measurement Precision 2~3MeV

performed in ZH runs (240GeV)

WW threshold scan WW threshold runs (157~172GeV) **Expected Precision 1MeV level**

WW threshold scan-systematics unc.

Consider the beam spread unc. (E_{BS}), beam energy unc., signal efficiency, cross section unc. and background uncertainty.

► With E_{BS} , the σ_{WW} becomes:

$$\sigma_{WW}(E) = \int_0^\infty \sigma_{WW}(E') \times G(E, E') dE'$$

$$\approx \int_{E-6\sqrt{2}\Delta E_{BS}}^{E+6\sqrt{2}\Delta E_{BS}} \sigma(E') \times \frac{1}{\sqrt{2\pi}\sqrt{2}E_{BS}} e^{\frac{-(E-E')^2}{2(\sqrt{2}E_{BS})^2}} dE'$$

- $\triangleright E_{BS} + \Delta E_{BS}$ is used in the simulation, and E_{BS} is for the fit formula.
- ightharpoonup The m_W insensitive to ΔE_{BS} when taking data around $162.1~{
 m GeV}$

By Peixun Shen (Nankai University)

WW threshold scan – run plan

- WW threshold scan running proposal
 - Assuming one year data taking in WW threshold (2.5 ab-1)
 - Four energy scan points:
 - 157.5, 161.5, 162.5(W mass, W width measurements)
 - 172.0 GeV (α_{QCD} (m_W) measurement, Br (W->had), CKM |Vcs|)
 - 16M WW events in total
 - 400 times larger than LEP2 comparing WW runs

E _{cm} (GeV)	Lumiosity (ab ⁻¹)	Cross section (pb)	Number of WW pairs (M)	(4u)
157.5	0.5	1.25	0.6	۲
161.5	0.2	3.89	0.8	
162.5	1.3	5.02	6.5	
172.0	0.5	12.2	6.1	

WW threshold scan – physics goal

- Statistics is enough for Branching ratio measurement Br (W->had) and αQCD (mW) measurements.
- Statistics uncertainty is one of the limiting factor for W mass and W width measurement with CEPC one year running plan (2.5 fb⁻¹)

Energy (GeV)	Systematics	Statistics uncertainty	limiting factor
W mass	1MeV Beam energy	1.0 MeV	/
W width	1 MeV	3.2 MeV	Statistics
Br (W->had) & α_{QCD} (mW)	10-4	10 ⁻⁴	

W mass direct measurement

- The Z, W, and Higgs bosons can be well separated in CEPC.
- Benefitted from excellent jet energy resolution and PFA based calorimeter
- Possible to measure W mass from direct di-jet mass reconstruction.

W mass direct measurement

- Reconstruct di-jet mass from WW->lvqq events in ZH run
 - Not affect by beam energy uncertainty
 - Major systematics is Jet energy scale (JES) uncertainty (2~3 MeV)
 - Calibrate JES with Tera-Z (Z->jj)

By Peizhu Lai (NCU)

EP2018

Prospect of CEPC W mass measurement

- CEPC can improve current precision of W mass by one order of magnitude
 - A possible BSM physics can be discovered in the future

Outline

- Introduction to CEPC
- W physics
- Z pole physics

Branching ratio (Rb)

$$\frac{\Gamma(\mathrm{Z} \to \mathrm{bb})}{\Gamma(\mathrm{Z} \to \mathrm{had})}$$

- LEP measurement 0.21594 ±0.00066 (~0.3%)
 - Stat unc and Systematics Unc. Have similar contribution
- CEPC
 - Expected Stat Unc. Is neglectable
 - Expected Syst error (0.02%)
 - Expect to use 80% working points
 - 15% higher efficiency than SLD
 - 20-30% higher in purity than SLD

Uncertainty	LEP	CEPC	Thing to improve
hemisphere tag correlations for b events	0.2%	0.02%	B tagging performance, pixel
gluon splitting	~0.15%	0.01%	Better granularity in Calo

Rb: hemisphere tag correlations

- Study hemisphere b tag correlations systematics with full simulation
- Two ways to reduce correlations factor -> reducing systematics
 - Using tighter cuts to choose Z->bb events
 - Use different B jet tagger (soft muon tag Vs impact parameter)
 - Correlations factors c_b need to be reduced below 0.01%

By Bo Li (Yantai University)

$$C_b = \frac{\varepsilon_{2jet-tagged}}{(\varepsilon_{1jet-tagged})^2}$$

Weak mixing angle

- LEP/SLD: 0.23153 ± 0.00016
 - ~0.07% precision. (Stat error is limiting factor.)
- CEPC
 - Aim for 0.002% precision
 - Input from Backward-forward asymmetry measurement of Z->bb and Z->μμ

Backward-forward asymmetry in Z->µµ

LEP measurement: 1.69% +-0.13%(PDG fit)

 $A_{FB}^{(0,\mu)}$

- CEPC aim to improve it by a factor of 20~30.
 - muon angular resolution and acceptance
 - the precision of beam energy measurement
- Full simulation studies to understand muon angular resolution
 - Muon angular resolution can reach 1e-4 to 1e-5 level

Weak mixing angle (2)

- Comparison with Fcc-ee on weaking mixing angle measurement
 - Expect 1~2 order magnitude better than LEP results
 - consistent with FCC-ee prediction

Improvement compared to LEP results	CEPC	FCC-ee (Paolo's talk in CEPC Roma workshop)
A _{FB} (Z->ee)	30	50
A_{FB} (Z-> $\mu\mu$)	20-30	30
A_{FB} (Z-> $\tau\tau$)	NA	15
A _{FB} (Z->bb)	10	5
Weak mixing angle	70	100

Status of W/Z physics study in CEPC

- The prospect of W/Z physics study in CEPC are under study
- Mainly based on projection from LEP

Observable	LEP precision	CEPC precision	CEPC runs	$\int \mathcal{L}$ needed in CEPC
m_Z	2 MeV	0.5 MeV	Z threshold scan	$3.2\mathrm{ab}^{-1}$
$A_{FB}^{0,b}$	1.7%	0.1%	${\cal Z}$ threshold scan	$3.2\mathrm{ab}^{-1}$
$A_{FB}^{0,\mu}$	7.7%	0.3%	${\cal Z}$ threshold scan	$3.2\mathrm{ab^{-1}}$
$A_{FB}^{0,e}$	17%	0.5%	${\cal Z}$ threshold scan	$3.2\mathrm{ab}^{-1}$
R_b	0.3%	0.02%	Z pole	$3.2\mathrm{ab}^{-1}$
R_{μ}	0.2%	0.01%	Z pole	$3.2\mathrm{ab}^{-1}$
$N_{ u}$	1.7%	0.05%	ZH runs	$5\mathrm{ab}^{-1}$
m_W	33 MeV	2-3 MeV	ZH runs	$5\mathrm{ab}^{-1}$
m_W	33 MeV	1 MeV	WWthreshold	$2.5 \mathrm{ab}^{-1}$

Summary

- CEPC community is working on in Conceptual Design Report.
 - updated CEPC accelerator design on Z pole and WW runs
 - order of magnitudes larger than pre-CDR
 - Prospect of CEPC W/Z physics improved benefitted from higher design luminosity
- Welcome to join this effort
 - Lots of work needed to understand the systematics
- Thanks for hard work from current team.
 - PhD Students, and who are practically working:
 - Peixun Shen (Nankai U.), Pei-Zhu Lai (NCU), Mengran Li (IHEP), Bo Li(Yantai U.)
 - Supervisors, Conveners, Experts, who are contributing ideas:
 - Gang Li (IHEP), Zhijun Liang (IHEP), Manqi Ruan (IHEP), Bo Liu (IHEP), Chai-Ming Kuo (NCU), Maarten Boonekamp (CEA Saclay), Hengne Li (SCNU/UVa), Fuivio Piccinini (INFN), Liantao Wang (Chigago), Joao Costa (IHEP)

Open issue

- Tools needed:
 - Soft muon b jet tagger is needed for R_b measurement
 - Jet charge reconstruction is need for Afb_b
- Analyses to be covered
 - Afb_b , Afb_e measurements
 - Key input to weak mixing angle measurement
 - W->jj branching ratio and alpha_QCD
 - Z->II off-peak runs design and alpha_QED measurements

Backward-forward asymmetry

- LEP measurement : 0.1000+-0.0017 (Z peak)
 - Method 1: Soft lepton from b/c decay (~2%)
 - Select one lepton from b/c decay, and one b jets
 - Select lepton charge (Q_lepton) and jet charge (Q_jet)
 - Method 2: jet charge method using Inclusive b jet (~1.2%)
 - Select two b jets
 - use event Thrust to define the forward and background
 - Use jet charge difference (Q_F Q_B)
 Q_lepton Q_jet in method 1

Arxiv:Hep-ex/0107033

Q_F - Q_B in method 2

Backward-forward asymmetry

- LEP measurement : 0.1000+-0.0017 (Z peak)
 - Method 1: Soft lepton from b/c decay (~2%)
 - Method 2: jet charge method using Inclusive b jet (~1.2%)
 - Method 3: D meson method (>8%, method)
- CEPC
 - Focus more on method 2 (inclusive b jet measurement)
 - Expected Systematics (0.15%):

Uncertainty	LEP	CEPC	Things to improve
hemisphere tag correlations for b events	1.2%	0.1%	Higher b tagging efficiency
QCD and thrust axis correction	0.7%	0.1%	

Backward-forward asymmetry

- Uncertainty Afb_b due to QCD correction to Thrust
 - Higher order QCD effect is major systematics

Error source	$C_{\mathrm{QCD}}^{\mathrm{quark}}$ (%)		$C_{ m QCD}^{ m part,T}$ (%)	
	$bar{b}$	$c\bar{c}$	$b\bar{b}$	$c\bar{c}$
Theoretical error on m_b or m_c	0.23	0.11	0.15	0.08
$\alpha_s(m_Z^2) \ (0.119 \pm 0.004)$	0.12	0.16	0.12	0.16
Higher order corrections	0.27	0.66	0.27	0.66
Total error	0.37	0.69	0.33	0.68

CEPC detector (2)

- Calorimeters:
 - Concept of Particle Flow Algorithm (PFA) based
 - − EM calorimeter energy resolution: $\sigma_E/E \sim 0.16/\sqrt{E}$
 - − Had calorimeter energy resolution: $\sigma_F/E \sim 0.5/\sqrt{E}$
 - Expected jet energy resolution : $\sigma_{E}/E \sim 0.3/\sqrt{E}$

