Electroweak Physics at FCC-ee

Tadeusz Lesiak

Institute of Nuclear Physics Polish Academy of Sciences, Kraków

on behalf of the FCC-ee study group

ICHEP2018, Seoul

Outline

1. The Future Circular Collider Study
2. FCC-ee Electroweak Studies at the Z Pole
3. WW Physics at FCC-ee
FCC – Future Circular Collider

FCC - international collaboration hosted at CERN, goal: construction of ~100 km circumference tunnel infrastructure in Geveva area to host:

✓ e- e+ collider: FCC-ee – potential first step, preceding the FCC-pp
✓ p-p collider: FCC-hh – flagship, 100 TeV p-p, 16T magnets
✓ e-p collider: FCC-he – additional option of e-p collisions; e- from ERL

„...the FCC offers a leap into completely uncharted territory, from delivering mind-boggling statistics of ~5 x 10^{12} Z decays (e^+ e^-), all the way up to proton-proton collision at an energy of 100 TeV."

CERN thinks bigger”, CERN Courier Magazine, June 2018

Short term goal: CDR and cost review by the end of 2018 to take part in discussion on European Strategy for Particle Physics 2020
FCC-ee Collider Parameters

- **FCC-ee**: two rings (separate for e^+ and e^-); four interaction points; flat beams with very strong focusing ($\beta^*_y \approx 1$ mm); top-up injection, crab waist crossing, non-zero crossing angle.

Four working points:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>$\sqrt{s} = M_Z$</th>
<th>$\sqrt{s} = M(WW)$</th>
<th>$\sqrt{s} = M(ZH)$</th>
<th>$\sqrt{s} = M(t\bar{t})$</th>
<th>LEP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{beam} [GeV]</td>
<td>45.6</td>
<td>80</td>
<td>120</td>
<td>182.5</td>
<td>104.5</td>
</tr>
<tr>
<td>Beam current [mA]</td>
<td>1390</td>
<td>147</td>
<td>29</td>
<td>5.4</td>
<td>4</td>
</tr>
<tr>
<td>No. Bunches/beam</td>
<td>16640</td>
<td>2000</td>
<td>393</td>
<td>48</td>
<td>4</td>
</tr>
<tr>
<td>SR energy loss/turn [GeV]</td>
<td>0.036</td>
<td>0.34</td>
<td>1.72</td>
<td>9.21</td>
<td>3.34</td>
</tr>
<tr>
<td>SR power [MW]</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>22</td>
</tr>
<tr>
<td>RF Voltage [GV]</td>
<td>0.1</td>
<td>0.44</td>
<td>2.0</td>
<td>10.93</td>
<td>3.5</td>
</tr>
<tr>
<td>β^*_x [m]</td>
<td>0.15</td>
<td>0.2</td>
<td>0.3</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>β^*_y [mm]</td>
<td>0.8</td>
<td>1</td>
<td>1</td>
<td>1.6</td>
<td>50</td>
</tr>
<tr>
<td>ε_x [nm]</td>
<td>0.27</td>
<td>0.28</td>
<td>0.63</td>
<td>1.46</td>
<td>19.3</td>
</tr>
<tr>
<td>ε_y [pm]</td>
<td>1</td>
<td>1.7</td>
<td>1.3</td>
<td>2.9</td>
<td>230</td>
</tr>
<tr>
<td>$L \left(10^{34} \text{ cm}^{-2}\text{s}^{-1}\right)/\text{IP}$</td>
<td>>200</td>
<td>>25</td>
<td>>7</td>
<td>>1.4</td>
<td>0.012</td>
</tr>
<tr>
<td>Statistics (2expts)</td>
<td>5x10^{12} Z / 6yrs</td>
<td>3x10^7 WW/2yr</td>
<td>10^6 ZH/5yrs</td>
<td>10^6 tt / 5yrs</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- LEP1: 2.1×10^{31} cm$^{-2}$s$^{-1}$
- LEP2: 3.6×10^{31} cm$^{-2}$s$^{-1}$
Event statistics:

<table>
<thead>
<tr>
<th>Event</th>
<th>E_{cm} [GeV]</th>
<th>N_{events}</th>
<th>Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z peak</td>
<td>91</td>
<td>5×10^{12}</td>
<td>$e^+e^- \rightarrow Z$</td>
</tr>
<tr>
<td>WW threshold</td>
<td>161</td>
<td>3×10^7</td>
<td>$e^+e^- \rightarrow WW$</td>
</tr>
<tr>
<td>ZH threshold</td>
<td>240</td>
<td>10^6</td>
<td>$e^+e^- \rightarrow ZH$</td>
</tr>
<tr>
<td>tt threshold</td>
<td>350</td>
<td>10^6</td>
<td>$e^+e^- \rightarrow tt$</td>
</tr>
</tbody>
</table>

Luminosities (10^{34} cm^{-2}s^{-1}):

- **LEP1** $= 10^5$
- **LEP2** $= 10^3$
- **LEP3** $= Never done$
- **FCC-ee (Baseline, 2 IPs)** $= 10^5$
- **ILC (Baseline)** $= Never done$
- **CLIC (Baseline)** $= Never done$
- **CEPC (Baseline, 2 IPs)** $= Never done$

Energy errors:

- LEP: 100 keV
- LEP x 10^3: 300 keV
- Never done: 5 MeV
- Never done: 10 MeV
FCC-ee Detectors

- Full silicon tracking system (≥12 hits/track)
- High granularity calorimeters optimized for particle flow reconstruction
- Superconducting coil (2T) located outside the calorimeters
- Steel return yoke containing muon chambers
- Forward region reserved for Machine-Detector Interface and LumiCal
- Tracking fully efficient from 700 MeV
- δpT ≈ 4 x 10^{-5} GeV^{-1} (for muons p=100 GeV)
- ΔE/E = (3-5)% (barrel region)
- Efficiency for electrons and gammas > 95%

CLD - detector model for FCC-ee derived from CLICdp model and optimized for FCC-ee experimental conditions

IDEA - (International Detector Electron Accelerator) under development; drift chamber tracker
Electroweak Physics at the Z pole

- **Z mass and width (from Z pole scan):**
 - The crucial factor: continuous E_{cm} calibration (resonant depolarization)
 - $\Delta E_{\text{CM}} \approx (10 \text{ (stat)} + 100 \text{ (syst)}) \text{ keV}

<table>
<thead>
<tr>
<th>Z mass, width</th>
<th>Δ_{rel} (LEP)</th>
<th>Improvement factor</th>
</tr>
</thead>
</table>
| 1×10^{-6}, 5×10^{-5} | 20, 20 | 2.1 MeV \rightarrow 100 keV, 2.3 MeV \rightarrow 100 keV

- **Normalized partial widths:**
 - $R_l = \frac{\Gamma_{\text{had}}}{\Gamma_{\nu\bar{\nu}}}$, $l = e, \mu, \tau$
 - $R_q = \frac{\Gamma_{q\bar{q}}}{\Gamma_{\text{had}}}$, $q = b, c$
 - $\Gamma_{ff} \propto (g_V^f)^2 + (g_A^f)^2$
 - Necessary input for a precise measurement of EW couplings (next slide)

- **$\alpha_S(m_Z^2)$ (from hadronic Z decays):**
 - **FCC-ee precision:** $\Delta_{\text{rel}}\alpha_S(m_Z^2) = 2 \times 10^{-3}$
 - **LEP:** 2.5%

T.Lesiak
Electroweak Physics at FCC-ee
ICHEP 2018
6. July 2018
Electroweak Physics at the Z pole

- **Z asymmetries:**

 \[
 \frac{d\sigma_{ff}}{d\cos\theta} = \frac{3}{8} g_{ff}^\text{tot} \left[(1 - P_e A_e)(1 + \cos^2 \theta) + 2(A_e - P_e)A_f \cos \theta \right]
 \]

 - **Pe - polarization** of the initial state e-
 - The forward-backward asymmetry:
 \[
 A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B} = \frac{3}{4} A_e A_f
 \]
 - The left-right asymmetry:
 \[
 A_{LR} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = A_e
 \]

 Experimentally accessible observables:

 - \(A_f \) measured (\(f = e, \mu, \tau, b, c \))
 - \(g^f_L, g^A_L \) extracted
 - \(\sin^2 \theta_{\text{w, eff}} = \frac{1}{4} \left(1 - \frac{g^f_L}{g^A_L} \right) \)

 Precision on vector and axial couplings from \(R_f \) and \(A_f \):

 Improvement w.r.t. LEP: 10-100

<table>
<thead>
<tr>
<th>fermion</th>
<th>(\Delta g_V)</th>
<th>(\Delta g_A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>(2.5 \times 10^{-4})</td>
<td>(1.5 \times 10^{-4})</td>
</tr>
<tr>
<td>(\mu)</td>
<td>(2.0 \times 10^{-4})</td>
<td>(2.5 \times 10^{-5})</td>
</tr>
<tr>
<td>(\tau)</td>
<td>(3.5 \times 10^{-4})</td>
<td>(0.5 \times 10^{-4})</td>
</tr>
<tr>
<td>b</td>
<td>(1.0 \times 10^{-2})</td>
<td>(1.5 \times 10^{-3})</td>
</tr>
<tr>
<td>c</td>
<td>(1.0 \times 10^{-2})</td>
<td>(2.0 \times 10^{-3})</td>
</tr>
</tbody>
</table>

LEP & SLC: longstanding discrepancies between different asymmetry measurements; uncertainties dominated by statistics
Electroweak Physics at the Z pole

- Measurement of $\alpha_{\text{QED}}(m_Z^2)$ - better precision necessary for future precision SM tests!
 - Current uncertainty: $\Delta \alpha_{\text{QED}}(m_Z^2) = 10^{-4}$ from running coupling constant formula:
 - dominated by the experimental determination of the hadronic vacuum polarization, obtained from dispersion integral with expt. input from low energies (KLOE, Belle, BaBar, CLEO, BES CMD-2...)
 - Alternative: the direct measurement of $\alpha_{\text{QED}}(m_Z^2)$ from the muon FB asymmetry just below and just above the Z pole (as part of Z resonance scan) – no need of extrapolation from $\alpha_{\text{QED}}(0)$
 - $A_{FB}^{\mu\mu}$ - self normalized quantity
 - no need for measurement of L_{int}; most uncertainties (sel. efficiency, det. Acceptance) cancel in the ratio
 - $\frac{\Delta \alpha_{\text{QED}}}{\alpha_{\text{QED}}} \sim \frac{\Delta A_{FB}^{\mu\mu}}{A_{FB}^{\mu\mu}} \times \frac{Z + \gamma}{Z - \gamma}$

Optimal CMS energies:
- $\sqrt{s_-} = 87.9$ GeV
- $\sqrt{s_+} = 94.3$ GeV

- $\frac{1}{\alpha_{\text{QED}}(m_Z^2)} = 1 + \beta_{\text{QED}} \log \frac{s_+}{m_Z^2}$
 - $\Delta \alpha_{\text{QED}}(m_Z^2) = 3 \times 10^{-5}$
 - (adequate for future precision EW fits)
The Z Invisible Width
– Number of Light Neutrino Species

1) N_ν determined at LEP1 from the Z line-shape scan:

$$N_\nu = 2.9840 \pm 0.0082$$

2σ below 3.0

A hint of non-unitarity of the PMNS matrix?

Only small room for improvements: precision limited mainly by the theoretical uncertainty on luminosity determination i.e. on small angle Bhabha cross section (LEP1: $\Delta L/L = 0.00061$, $\Delta N_\nu^{\text{lumi}} = 0.0046 \Rightarrow \Delta N_\nu^{\text{lumi}} = 0.0001$ @FCC-ee).

$$\Delta N_\nu^{FCC-ee} = 0.00008(\text{stat}) \pm 0.0001(\text{syst})$$

2) N_ν from the radiative return process

Monophoton events (normalized to photon-lepton-lepton events):

$$N_\nu = \frac{N_{\nu/e e^{-} \rightarrow \gamma Z_{\text{inv}}}^{\text{meas}}}{N_{\nu/e e^{-} \rightarrow \gamma Z_{\text{lept}}}^{\text{meas}}} \left(\frac{\Gamma_{\nu} \nu}{\Gamma_{\text{lept}}} \right)^{\text{SM}}$$

- LEP1: $N_\nu = 2.92 \pm 0.05$ (statistics too scarce).
- Photon selection common for both final states \Rightarrow cancellations of systematics.
- N_ν can be measured vs \sqrt{s} \Rightarrow sensitivity to NP at high energy scales.
- FCC-ee sensitivity:

<table>
<thead>
<tr>
<th>\sqrt{s} [GeV]</th>
<th>years of running</th>
<th>ΔN_ν (stat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>161</td>
<td>1</td>
<td>0.0011</td>
</tr>
<tr>
<td>240 & 340</td>
<td>5</td>
<td>0.0008</td>
</tr>
<tr>
<td>125</td>
<td>1</td>
<td>0.0004</td>
</tr>
</tbody>
</table>

$3 \times 10^7 \gamma Z(\text{inv})$ ev.

$\Delta N_\nu \leq 4 \times 10^{-4}$ (running parasitically)
The W mass from σ_{WW}:

- Measure σ_{WW} in two energy points E_1 and E_2, with the fractions of luminosity f and $(1-f)$
- Evaluation of both m_W and Γ_W

The W width from σ_{WW}:

- Measure σ_{WW} in two energy points E_1 and E_2, with the fractions of luminosity f and $(1-f)$
 - Evaluation of both m_W and Γ_W
- Choose the parameters E_1, E_2 and f in order to minimize the errors: $\Delta\Gamma_W$ and Δm_W:
 - $E_1 = 157.1 \text{ GeV}$
 - $E_1 = 162.3 \text{ GeV}$
 - $f = 0.4$
- $\Delta m_W = 1 \text{ MeV}$
- $\Delta \Gamma_W = 1.5 \text{ MeV}$
- $\Delta m_W^{\text{stat}} = 0.6 \text{ MeV}$
W Physics: Branching Ratios, TGCs...

- **WW samples (FCC-ee)**
 - \sqrt{s} [GeV] 161 240 350
 - $N_{WW} \times 10^6$ 30 80 15

- **W Branching ratios (%)**
 - **LEP2**
 - $BR(W \to e\nu)$ 10.65 ± 0.17
 - $BR(W \to \mu\nu)$ 10.59 ± 0.15
 - $BR(W \to \tau\nu)$ 11.44 ± 0.22
 - $BR(W \to l\nu)$ 10.84 ± 0.09
 - $BR(W \to \text{hadrons})$ 67.48 ± 0.28

 - Lepton universality tested at **2%** level (2.7σ discrepancy between τ and μ/e)
 - Quark-lepton universality tested at **0.6%**

- **FCC-ee**
 - Lepton universality test at **0.04%** level
 - Quark-lepton universality test at **0.01%**
 - Flavour tagging \rightarrow Vcs Vcb...

- **Triple Gauge Couplings**
 - Selected LEP limits (95% C.L.)
 - Δk_γ $[-9.9,6.6] \times 10^{-2}$
 - λ_γ $[-5.9,1.7] \times 10^{-2}$
 - Δk_Z $[-7.4,5.1] \times 10^{-2}$
 - λ_Z $[-5.9,1.7] \times 10^{-2}$
 - Δg_1^Z $[-5.4,2.1] \times 10^{-2}$

 - FCC-ee: overall improvements by a factor of **50** to compare with LEP

- **The strong coupling constant:**
 - FCC-ee: $\Delta_{r\alpha_S}(m_W^2) = 3 \times 10^{-3}$
 - from hadronic W decays (Γ_W and $BR_{W,\text{had}}$)
 - LEP2 precision: 37%
The FCC-ee offers unprecedented precision of electroweak studies!

The expectations of precision for electroweak observables in the sector of Z pole and WW threshold have been discussed:

- $\Delta M_Z = 100$ keV
- $\Delta \Gamma_Z = 100$ keV
- $\Delta M_W = 1$ MeV
- $\Delta \Gamma_W = 1.5$ MeV
- $\Delta_{\text{stat}} \sin^2 \Theta_{W,\text{eff}} = 10^{-7}$

Expectations for coupling constants:

- $\Delta_{\text{rel}} \alpha_{\text{QED}}(m_Z^2) = 3 \times 10^{-5}$
- $\Delta_{\text{rel}} \alpha_S(m_Z^2) = 2 \times 10^{-3}$
- $\Delta_{\text{rel}} \alpha_S(m_W^2) = 3 \times 10^{-3}$

The precision electroweak measurements have very strong sensitivity for New Physics searches.

The other talks about FCC-ee physics:
- Physics at the FCC: a story of synergy and complementarity
- Right-Handed neutrino searches at the FCC
- Higgs measurements at the Future Circular Colliders
- Top-quark physics at the Future Circular Colliders
- QCD and gamma-gamma Physics at FCC-ee
- Flavour Physics at FCC-ee (poster)