

Direct and Indirect Measurements of the Top Quark Mass in pp Collisions

Stefan Söldner-Rembold

The University of Manchester
On behalf of the DØ Collaboration

1995

The TevatrOn Particle

All results based on full Tevatron data set

Motivation

M. Shaposhnikov, EPS 2013

- Top mass important for self-consistency check of SM and for determining stability of EW vacuum.
- Requires a theoretically rigorous definition of top mass (pole mass).
- Difference between "MC mass" and pole mass expected to be of order 0.4 GeV.

(M. Butenschoen et al., PRL 117, 232001 (2016))

D. Buttazzo et al., JHEP 12, 89 (2013)

Top Pair Final States

$$Br(t\to W^+b)=100\%$$

Top Pair Branching Fractions

Lepton + jets

- 1 isolated lepton
- Missing E_T from neutrino
- ≥ 4 jets (2 b jets)

Dilepton

- 2 isolated leptons
- Large Missing E_T from neutrino
- 2 b jets

Not used in combination

- All-jets channel
- Tau channels

Top Mass and Jet Energy Scale (JES)

- Joint fit of JES and top mass in lepton+jets measurement, using W mass as constraint.
- This JES is then used for the dilepton channel.
- Uses matrix element method

$$m_t = 174.98 \pm 0.58 \,(\text{stat} + \text{JES}) \pm 0.49 \,(\text{syst}) \,\,\text{GeV}$$

 $m_t = 174.98 \pm 0.76 \,\,\text{GeV}$,

Most precise Tevatron single top mass measurement

DØ Combination

Direct top mass reconstruction measures MC mass parameter of the parton shower.

- Combination of Run I and Run II direct top mass measurements in leptons+jets and dilepton channels
- Analyses use matrix element and neutrino weighting

Period	Channel	$\int \mathcal{L}dt \ (\mathrm{fb}^{-1})$	Method
Run I	$\ell\ell'$	0.1	Combination of matrix weighting and neutrino weighting
Run I	ℓ + jets	0.1	Matrix element
Run II	$\ell\ell'$	9.7	Neutrino weighting
Run II	$\ell\ell'$	9.7	Matrix element
Run II	ℓ + jets	9.7	Matrix element

DØ Combination

- Combination takes into account all uncertainties and their correlations.
- Uses BLUE (Best Linear Unbiased Estimate) method.
- Combined direct mass

$$m_t = 174.95 \pm 0.40(\text{stat}) \pm 0.64(\text{syst}) \text{ GeV}$$

- Dominant systematic uncertainty from in-situ light-jet calibration (0.4 GeV).
- Good consistency:

$$\chi^2/NDF = 0.8$$
, Probability = 0.47

Phys. Rev. D 95, 112004 (2017)

DØ about 2-3 standard deviations higher than world average

DO combined values (GoV)

DØ Combination

- Combination takes into account all uncertainties and their correlations.
- Uses BLUE (Best Linear Unbiased Estimate) method.
- Combined direct mass

$$m_t = 174.95 \pm 0.40(\text{stat}) \pm 0.64(\text{syst}) \text{ GeV}$$

- Dominant systematic uncertainty from in-situ light-jet calibration (0.4 GeV).
- Good consistency:

$$\chi^2/NDF = 0.8$$
, Probability = 0.47

	D0 combined values (GeV)
Top quark mass	174.95
In situ light-jet calibration	0.41
Response to b , q , and g jets	0.16
Model for b jets	0.09
Light-jet response	0.21
Out-of-cone correction	< 0.01
Offset	< 0.01
Jet modeling	0.07
Multiple interaction model	0.06
b tag modeling	0.10
Lepton modeling	0.01
Signal modeling	0.35
Background from theory	0.06
Background based on data	0.09
Calibration method	0.07
Systematic uncertainty	0.64
Statistical uncertainty	0.40
Total uncertainty	0.75

Phys. Rev. D 95, 112004 (2017)

Top Pole Mass from Total Cross Section

- Total cross section depends on pole mass.
- Pole mass is the real part of the pole in the top-quark propagator – theoretically well defined.
- Measured cross section shows (weaker) top mass dependence due to acceptance variation.
- Use Bayesian flat prior for top mass.
- Extract pole mass (with MSTW2008):

$$m_t = 172.8 \pm 1.1 \text{ (theo.)} ^{+3.3}_{-3.1} \text{ (exp.)} \text{ GeV}$$

 $m_t = 172.8^{+3.4}_{-3.2} \text{ (tot.)} \text{ GeV}$

Phys. Rev. D 94, 092004 (2016)

Combined lepton+jets sample

PRD 90, 092006 (2014)

- Variables used
 - Mass of di-top system, m(tt)
 - Top transverse momenta, p_T(t)
- Data taken from published lepton+jets measurement (PRD 90, 092006 (2014))
- Need background subtracted and unfolded differential cross section to compare to theory calculations
- Use regularized matrix unfolding

$$\chi^2 = \sum_{i} \frac{\left(y_i^{\text{data}} - \sum_{j} A_{ij} \cdot x_j^{\text{true}}\right)^2}{\left(\delta y_i^{\text{data}}\right)^2} + \sum_{ij} \tau^2 \times L_{ij} (L_{ij})^T$$

Ratio to data

- Data taken from published lepton+jets measurement (PRD 90, 092006 (2014))
- Pole mass is extracted for both NLO and NNLO PDF sets from MSTW2008, CT10, NNPDF2.3 and HERAPDF
- Here compared to NNLO pQCD calculations (Czakon, Fiedler, Heymes, Mitov, JHEP, 1605, 034 (2016)) with MSTW 2008.
- Sensitivity mainly at the threshold in m(tt) and for lower p_T(t)

7/7/2018 ICHEP 2018 11

- Mass extracted from fit to unfolded data, using correlation matrix.
- χ^2 (data-theory) minimized to determine mass and uncertainty using parton level calculations.

$$\chi^2 = \sum_{i,j} (x_i^{\text{true}} - x_i^{\text{theo}}) \cdot \mathbf{V}_{\mathbf{xx}; \mathbf{i}, \mathbf{j}}^{-1} \cdot (x_j^{\text{true}} - x_j^{\text{theo}}),$$

- Scale and PDF are varied to obtain systematic uncertainty.
- Result is average of global PDFs (MSTW2008, CT10, NNPDF2.3).
- Extracted top mass

 $m_t = 169.1 \pm 2.5 \text{ GeV}$

Final result is imminent with smaller uncertainties and slightly shifted central value.

Higher NNLO cross section leads to higher mt

7/7/2018 ICHEP 2018 13

Comparison of Results

- Good agreement observed within uncertainties.
- Tevatron top mass slightly higher than LHC average.
- No significant difference between direct mass and pole mass.
- Final pole mass result for total differential cross section expected soon.

Top quark mass [GeV]

7/7/2018 ICHEP 2018 14