

Standard Model measurements at the High-Luminosity LHC with the CMS experiment

A.Savin*
University of Wisconsin, Madison, USA

*on behalf of the CMS Collaboration ICHEP 2018, Seoul, Korea, July 04-11, 2018

High Luminosity LHC project

- At the beginning of the next decade, many critical components of the accelerator will reach the end of their lifetime due to radiation damage and will thus need to be replaced.
- The HL-LHC will rely on a number of key innovative technologies, including cutting-edge 11-12 Tesla superconducting magnets, compact superconducting crab cavities with ultraprecise phase control for beam rotation, new technology for beam collimation, highpower, loss-less superconducting links, etc.
- Goal is to achieve instantaneous luminosities a factor of five larger than the LHC nominal value

Summary of the CMS Phasell upgrade

L1-Trigger/HLT/DAQ

https://cds.cern.ch/record/2283192 https://cds.cern.ch/record/2283193

Tracks in L1-Trigger at 40 MHz for 750 kHz
 PFlow-like selection rate

• HLT output 7.5 kHz

Barrel Calorimeters

https://cds.cern.ch/record/2283187

- ECAL crystal granularity readout at 40 MHz with precise timing for e/γ at 30 GeV
- ECAL and HCAL new Back-End boards

Muon systems

https://cds.cern.ch/record/2283189

- DT & CSC new FE/BE readout
- New GEM/RPC 1.6 < η < 2.4
- Extended coverage to $\eta \simeq 3$

https://cds.cern.ch/record/2293646

- Si, Scint+SiPM in Pb-W-SS
- 3D shower topology with precise timing

Beam Radiation Instr. and Luminosity, and Common Systems and Infrastructure

https://cds.cern.ch/record/2020886

Tracker https://cds.cern.ch/record/2272264

- Si-Strip and Pixels increased granularity
- Design for tracking in L1-Trigger
- Extended coverage to $\eta \simeq 3.8$

MIP Timing Detector

https://cds.cern.ch/record/2296612

- ≃ 30 ps resolution
- Barrel layer: Crystals + SiPMs
- Endcap layer: Low Gain Avalanche Diodes

SM measurements at the HL-LHC

- Precise measurements (new methods + syst + stat)
 - Top mass
 - Weak mixing angle measurement
- Measurements with low cross sections
 - Flavor Changing Neutral Current in top production
 - VV VBS and polarized cross sections
- Measurements that profit from new detector
 - $B_S^0 \to \phi \phi \to 4K$
 - $\tau \rightarrow 3\mu$

Recent publications:

- CMS-TDR-17-014 (tracker), CMS-TDR-17-015(barrel calorimeter),
 CMS-TDR-17-016(muon system), CMS-TDR-17-019 (HGCAL)
- CMS-PAS-FTR-16-006, CMS-PAS-FTR-17-001
- Yellow Report CMS+ATLAS+LHCb+Theory end of 2018

Top Mass

- CMS-PAS-FTR-16-006, CMS-TDR-17-014
- Top quark mass fundamental SM parameter
- Different measurement methods: l+jets mass, single top, track- and vertex-based distributions, the " J/ψ " method (see next page), cross section
- I+jets measurement at 8 TeV:

$$172 \pm 0.77(stat) ^{+0.97}_{-0.93}(sys) GeV$$

CMS 7+8 TeV combined: $(172.44 \pm 0.13 \pm 0.47) \; GeV$

Top Mass

• " J/ψ " method should

benefit from statistics

 Nice reconstruction even at PU200

Moderate improvement for pole mass from cross sections

 Ultimately limited by lumi. uncertainty and theory uncertainty (no N3LO assumed)

- Single top:
 - Benefit from statistics and modelling improvements
- I+jets
 - Benefit from differential studies constraining modelling

Effective mixing angle via forw.-backw. asymmetry

Vector and axial-vector couplings in NC annihilation

arXiv:1806.00863

$$q\bar{q} \rightarrow Z/\gamma^* \rightarrow \ell^+\ell^-$$

Differential cross section

$$\frac{\mathrm{d}\sigma}{\mathrm{d}(\cos\theta)} = \frac{4\pi\alpha^2}{3\hat{s}} \left[\frac{3}{8} A(1+\cos^2\theta) + B\cos\theta \right]$$

$$A_{\rm FB} = \frac{\sigma_{\rm F} - \sigma_{\rm B}}{\sigma_{\rm F} + \sigma_{\rm B}}$$

Dilution is smaller at high Y

1.6 ≤ IY_{....}I < 2.0

CMS Phase-2 Simulation Preliminary

0.4 ≤ IY I < 0.8

Fit to A_{FB} to measure weak mixing angle

M, (GeV)

$$\sin^2 Q_{eff}^{lept} = \text{Re}[k_l(m_Z^2, \sin^2 Q_W)] \sin^2 Q_W$$

$$m_W^2 \sin^2 q_W = \frac{pa}{\sqrt{2}G_F} \frac{1}{1 - Dr}$$
 Indirect measure of m_W

1.2 ≤ IY I < 1.6

ICHEP2018, SM at HL-LHC with CMS A.Savin

CMS-PAS-FTR-17-001

 $2.0 \le |Y_{...}| < 2.4$

Effective mixing angle via forw.-backw. asymmetry

- Higher sensitivity at *high pseudorapidity* region, statistical and systematic uncertainties will be significantly reduced.
- AFB values depend on the size of the dilution effect and relative contributions from u and d quarks - the *PDF uncertainties* translate into sizable variations in the observed AFB values.
 - In the Bayesian χ2 reweighting method,
 PDF replicas that better describe the
 observed AFB distribution are assigned
 larger weights, and PDF replicas that poorly
 describe AFB are assigned smaller weights.
- to 2.8 decreases the statistical uncertainties by about 30% and PDF uncertainties by about 20% Starting from about 1000fb⁻¹, a single measurement would already have a negligible statistical uncertainty and the PDF uncertainty could be constrained and improved by x2!

FCNC processes in top production

 Forbidden at tree level and highly suppressed at higher order, Br $\sim 10^{-12/-16}$ (NP)

tZq , tγq, tgq, tHq

Single top

ttbar

FCNC in $t\rightarrow q\gamma$ events

CMS-TDR-17-019

- Current limit 1.6(18.2) x 10⁻⁴ u(c)
- Final state:
 - one lepton, $p_{T} > 25 \text{ GeV } |\eta| < 2.8$
 - one b-jet, $p_T > 30 \text{ GeV } |\eta| < 2.8$
 - one photon, $p_T > 50 \text{ GeV } |\eta| < 2.8$
- The upper limit on the single top quark production cross section via $tu\gamma$ ($tc\gamma$) interaction of 3.4 (4.4) fb at 95% CL is obtained for an integrated luminosity of 3000 fb⁻¹.
- 95% CL upper limits on the branching fractions of B($t \rightarrow u\gamma$) < 8.6 × 10⁻⁶ and B($t \rightarrow c\gamma$) < 74 × 10⁻⁶, improving over the previous extrapolation to HL-LHC conditions by a factor of 3.

VV VBS and polarized cross section

.... etc producing WW, WZ and ZZ final states

EWK observed / expected significance in standard deviations

Channel	ssWW+2j	WZ+2j	ZZ+2j
expected	5.7	2.7	1.6
observed	5.5	1.9	2.7

CMS-PAS-SMP-18-001

Phys. Rev. Lett. 120 (2018) 081801

VV VBS and polarized cross section

- The total vector boson scattering is composed of three components, depending on the polarization of the final-state vector bosons: both of them being longitudinally polarized (LL), both of them being transversely polarized (TT), and the mixed case (LT).
- Expected cross section uncertainty decreases with the luminosity
- Expected discovery significance for the longitudinal vector boson scattering increases as a function of the collected luminosity.
- New results are expected soon for WW+WZ+ZZ combination

$B_S^0 \to \phi \phi \to 4K$

- CP-odd final state, determination of the CP violating phase in the CKM matrix
- FCNC forbidden at tree level in the SM

loop contributions from high masses

- Very low P_T tracks
- The L1 track finder forms φ candidates from oppositely charged tracks originating from the same vertex
- For 200 pileup events efficiency of around 30% (to compare to 55% offline), the expected L1 trigger rate is about 15 kHz within trigger budget

CMS-TDR-014

Lepton flavor violating decay $au o 3\mu$

CMS-TDR-17-016

- There are no known symmetries that strictly forbid lepton-flavor violating (LFV) decays, such as $l \rightarrow 3l'$
- Small Br, at LHC, $\tau \to 3\mu$ decay is one of the "cleanest" LFV decay channel. Best experimental upper limit, set by Belle Br<2.1×10⁻⁸ at 90% CL
- The main source $Ds \rightarrow \tau \nu$ decays. Very low momenta and are significantly boosted in the forward direction
- The projected exclusion limit on 3.7×10^{-9} at 90% CL, and 4.3×10^{-9} without MEO chambers. Effective gain ~ 1.35 i.e. from 3000 to ~ 4000 fb-1

· · · · · · · · · · · · · · · · · · ·		
	Category 1	Category 2
Number of background events	$2.4 imes 10^6$	2.6×10^{6}
Number of signal events	4580	3 6 4 0
Trimuon mass resolution	18 MeV	31 MeV
$B(\tau \to 3\mu)$ limit per event category	4.3×10^{-9}	7.0×10^{-9}
$B(\tau \rightarrow 3\mu)$ 90%C.L. limit	3.7×10^{-9}	
$B(\tau \to 3\mu)$ for 3σ -evidence	6.7×10^{-9}	
$B(\tau \to 3\mu)$ for 5σ -observation	1.1×10^{-8}	

/in

Conclusions

- The HL-LHC will allow to repeat many important SM measurements with significantly increased precision, that is essential for understanding the underlying physics processes
- To explore new channels that are predicted by SM with extremely low cross sections and branching fractions, any deviation from predictions will be a strong indication of physics beyond SM
- The HL-LHC requires modifications of existing detectors, extending the pseudorapidity coverage, improving the trigger systems
- A lot of physics studies are done already, the next step is to complete the Yellow Report by the end of 2018

Backup