



# Top physics at FCC

Clement Helsens CERN-EP
On behalf of the FCC study group
ICHEP 2018, Seoul

### Outline

- FCC in a nutshell
- Top physics at FCC-ee
  - Generalities
  - Threshold scans
  - Electroweak couplings, Electroweak fits
  - FCNC
- Top physics at FCC-hh
  - Generalities
  - Boosted topologies
  - FCNC
- Summary

### FCC scope

FCC: 100km tunnel in the Geneva area

### • FCC-hh:

- Vs =100TeV -> Needs 16T magnets
- Heavy resonances up to m ≈ 40 TeV
- Stops up to m ≈ 10TeV
- Higgs self-coupling, rare decays
- EWK, Top physics in extreme regimes

### FCC-ee

- Vs = 90 to 365GeV
- 20 to 50 fold improvements in many SM parameters
- Higgs width, DM as invisible decay of H
- BSM through loops
- Explore energy scales to ~10TeV scale



Schedule and physics program of both machine in perfect synergy

# Top @ FCC-ee

## Top physics at FCC-ee

first time top quark will be seen at lepton collider giving sensitivity to production modes that are currently unavailable

- Running conditions
  - Dedicated run of ~1.5 ab<sup>-1</sup> at and around tt threshold @350GeV
    - 0.2 ab<sup>-1</sup> for measurement threshold scan
    - 365GeV runs for top coupling measurement (ttZ,tty,ttH)
- Statistics
  - Cross-section at threshold ~0.55pb
  - With  $0.2+1.5ab^{-1}$  (6 years) ~  $10^6$  high purity top-pair events
- Top measurements
  - Precise measurements, coupled with precise Theo. Calc. -> excellent discovery potential
  - Portal to new physics effects at high scales
  - Clean environment and large statistics at FCC-ee will allow to probe:
    - Anomalous couplings
    - Indirect effects from loop contributions
    - Suppressed and rare decays (from very clean final states)

### Top at threshold scan

- Cross section at threshold
  - Highly sensitive to quark mass, width,  $\alpha_s$  and  $Y_t$
  - Can be calculated with high precision
- Measurement of the top pair prod. cross section
  - Different energy points in the threshold region
  - Other observables, top momentum, A<sub>FB</sub> may increase sensitivity
- Default assumption
  - Each energy point with equal int. luminosity
  - Optimal way to distribute the integrated luminosity depends on the variables



### Top at threshold scan

- Derivative of the cross section
  - For various parameters
  - Normalised to typical changes of these parameters

### Uncertainties

- Theory uncertainty from scale variations lead to
   ~ 45MeV systematic on the top quark mass
- Scale uncer. are roughly equivalent to a 3% luminosity uncertainty ->
   Needs to be known on the few per mille
- Beam energy leads to an effective shift of the curve which directly translates to mass value.
   Goal < ~10 MeV</li>



### Top width and mass

- 2D Mass & Width fit
  - mass: +16.6, -18.8 MeV
  - width: +45, -50 MeV
  - Theory uncertainty (symmetrized): mass: 45 MeV; width: 36 MeV
- 2D Mass & Yukawa fit
  - mass: +29 MeV, 26 MeV
  - yt: +0.12, -0.11
  - Theory uncertainty (symm.): mass: 36 MeV; y<sub>+</sub>: 0.11
  - $\alpha_s$  parametric uncertainty (2.10<sup>-4</sup>):

mass: 3MeV; y<sub>+</sub>: 0.02

Summary With 0.2 ab<sup>-1</sup> **Achieve Uncertainty** Top mass 45MeV Top width 17MeV

- Precise exploration of top properties with small theo. uncertainties
- With FCC-ee  $\alpha_s$  precision the corresponding uncertainty is negligible

F.Simon talk FCC week2018



### Top electroweak couplings

### arXiv:1503.01325 And soon FCC CDR

- ttZ, tty couplings
  - Enhanced in extra dimensions, composite Higgs models
  - Directly probed in the tt production at FCC-ee
- Large statistics and final state polarization allow a full separation of the ttZ/y couplings with
  - No need for polarization in the initial state
  - Optimal vs ~ 365GeV
- Fit includes conservative assumptions detector performance
- Theory uncertainty on production mechanism dominates
- FCC-ee expected precision of order 10<sup>-2</sup> to 10<sup>-3</sup>





### Prospective EWK t-W fits after FCC-ee

- Fit at the Z pole considering theo.
   uncertainties match experimental
- Improvements in  $m_t$ ,  $\alpha_s$ ,  $m_W$ 
  - FCC-ee will improve understanding and consistency of the SM in top-W-H radiative corrections
- Sensitivity for NP scale extended up to 70 TeV

Soon In the FCC CDR



## Top FCNC

- FCNC in the SM
  - Are forbidden at tree level
  - Only allowed via higher order corrections
  - Strongly suppressed is SM below 10<sup>-12</sup>
  - Can be strongly enhanced in BSM models
- At the FCC-ee they can be studied:
  - At decay vertex in pair production at Vs=350 GeV
  - At production vertex in single top events at vs=240 GeV and vs=370 GeV
  - FCNC limits on tqΥ/tqZ 10<sup>-4</sup>/10<sup>-5</sup>

### Soon In the FCC CDR



# Top @ FCC-hh

### Top production hh

- At 100TeV dominated by gluon-gluon fusion
- Top pair cross section
  - 45 times larger than @13TeV
- With 20ab<sup>-1</sup>
  - ~10<sup>13</sup> top pairs -> ~10<sup>13</sup> W's / b's
  - ~10<sup>12</sup> tau (rare decays, CPV)
- For m<sub>++</sub>>15TeV
  - gg production dominates
  - ~20k events with 20 ab<sup>-1</sup>
  - Interesting for new physics at high m<sub>++</sub>
- 4-top cross-section increase by ~1000





### Top kinematics

- At high Q<sup>2</sup>
  - can study the rapidity dependence
- @100TeV Top quarks
  - Tend to be produced at larger rapidity than at 14 TeV
  - Suggests that the top quarks at 100 TeV will be a copious source of large-rapidity lepton

 Make sure detectors cover well these regions



### **Boosted Top**

- Boosted two body decay from massive object has
  - typical angular size ΔR~2m/p<sub>T</sub>
- Top-quark
  - LHC:  $p_T \sim 1 \text{TeV} \rightarrow \Delta R = 0.5$
  - FCC:  $p_T \sim 10 \text{ TeV} \rightarrow \Delta R = 0.05$
- W/Z bosons:
  - LHC:  $p_T \sim 1 \text{TeV} \rightarrow \Delta R = 0.25$
  - FCC:  $p_T \sim 10 \text{ TeV} \rightarrow \Delta R = 0.025$
- Factor of 10 in granularity!

- Detector resolution FCC
  - Tracking  $\rightarrow \Delta R = 0.001$
  - ECAL  $\rightarrow \Delta R = 0.01$
  - HCAL  $\rightarrow \Delta R = 0.05$
  - Hit fundamental "conventional" calorimeter limit at extreme boosts

### Boosted Top jets

- Top quark carries colour charge and undergoes final state radiation
- Soft contamination (UE, ISR, PU) can produce large corrections to the top mass
- Apply grooming (pruning, soft drop, trimming)
- Results from full simulation of an FCC-hh calorimeter system
  - To be done with top
  - Use tracking to improve discrimination



16

## Top FCNC: tqy

- In top decays
  - Use boosted top
  - One of them decaying to qy
  - Good signal over background separation
  - Good mass reconstruction
- Improve existing experimental limits by 3-4 orders of magnitude







### Summary

- At FCC-ee
  - Top threshold scan one of the core measurements
  - Enables the precise exploration of top quark properties, with small theoretical uncertainties
  - top mass precision at 10MeV ttZ/ ttγ couplings at few %
  - FCNC limits on tqΥ/tqZ 10<sup>-4</sup>/10<sup>-5</sup>

- At FCC-hh
  - Produce tens of trillions of tops
  - Such high statistics can be used to target unexplored corners of the phase space
  - Contrary to common belief, high energy proton colliders are suitable for precision physics

Complementarity between FCCs

### Bonus

### Top at threshold scan

- Cross section at threshold
  - Highly sensitive to quark mass, width,  $\alpha_s$  and  $Y_t$
  - Can be calculated with high precision
- Threshold shape affected by
  - Initial state radiation
  - Machine beam energy spread
- Assuming purely Gaussian energy distribution
  - With no beamstrahlungs-tail
  - Only smearing, no reduction in effective cross section
- Measurement of the top pair production cross section
  - Different energy points in the threshold region
  - Other observables, top momentum, A<sub>FR</sub> may increase sensitivity





20

## Top electroweak couplings

arXiv:1503.01325

- Large statistics and final state polarization allow a full separation of the ttZ/y couplings with
  - No need for polarization in the initial state.
  - Optimal √s=365-370GeV
- Fit includes conservative assumptions detector performance
- Theory uncertainty on production mechanism dominates
- FCC-ee expected precision of order 10<sup>-2</sup> to 10<sup>-3</sup>











### Top versus QCD jet tagger

Variables: Soft dropped mass  $\tau$ 32,  $\tau$ 21,  $\tau$ 1/2/3

N-subjetiness Arxiv:1011.2268







