THE LHCB TRACKS RECONSTRUCTION IN

RUN 2: STRATEGY AND PERFORMANCE

Laurent Dufour¹, Renata Kopečná², Alex Pearce³, Maarten van Veghel¹

on behalf of the LHCb collaboration

¹Nikhef National Institute for Subatomic Physics, the Netherlands

²Physikalisches Institut, Heidelberg University, Germany

³CERN, Switzerland

39th ICHEP, Seoul, July 2018

LHCB DETECTOR

[1][2]

MUON TRACKING EFFICIENCY

- $\Box J/\psi \rightarrow \mu^+\mu^-$ decay is used [3]
 - \square $\mu\mu$ pair ideal to probe the whole tracking system
 - $\Box J/\psi$ gives a clear signal in the detector
- $\Box J/\psi$ coming from $B^+ \to J/\psi X$ (data) and $B^+ \to J/\psi K$ (MC)
 - \square Detached J/ψ for clean signal
 - □ Unbiased selection by dedicated trigger

Long Method T-station method Velo method

Final method = Long method + (VELO method ⊕ T-station method)

RECONSTRUCTION IMPROVEMENTS IN RUN 2

- Major improvements in the pattern recognition algorithms
- □ Factor of 2 speed-up, without loss in performance
- Extensive use of machine-learning techniques
- Example: Improved fake-track reduction
 - □ Fake tracks: not corresponding to a real particle's trajectory
 - \square Sped up by O(90%): allow the use in the online event selection
 - ☐ Ghost rate in online event selection reduced from 22% to 14%

[4]

ELECTRON TRACKING EFFICIENCY

LHCb preliminary

Electrons have a considerably different behaviour compared to muons

- □ Significant energy loss (**bremsstrahlung**) along trajectory
- □ Decreases reconstruction efficiency downstream of VELO

New method for measuring reconstruction efficiencies for electrons: Kinematically constrained VELO tracks originating from

$$B^+ \to J/\psi(\to e^+e^-)K^+$$

- □ Efficient VELO reconstruction (≈98%)
- Applicable also to muons & hadrons

LHCb preliminary

5200

- □ Direction inferred from VELO segment
- \square Probe momentum inferred from J/ψ mass constraint
- Use B^+ mass with J/ψ mass constraint to distinguish between signal and background

MEASUREMENT OF TRACKING EFFICIENCY

- □ All data selected and stored in software trigger: "TurCal" [5]
 - □ Offline-quality event reconstruction available online
 - □ Detector calibration ran online: offline-quality data
 - □ Data immediately available for analyses
- Efficiency from data using tag-and-probe method
 - □ Track parameter inference independent of standard track reconstruction
 - Exploit two-particle decays
 - ☐ First track from the decay is fully reconstructed (tag track)
 - Second track is reconstructed excluding the probed subdetector (probe track)

□ Tracking efficiencies easily accessible using "TrackCalib" tool

- □ Transparent and easy efficiency estimation
- □ User-defined track-quality cuts, binning and variables
- Available for all users

REFERENCES

- [1] A. A. Alves Jr. et al. [LHCb collaboration], JINST 3 (2008) S08005
- [2] R. Aaij *et al.* [LHCb collaboration], Int. J. Mod. Phys. A30 (2015) 1530022
- [3] R. Aaij *et al.* [LHCb Collaboration], JINST **10**, no. 02, P02007 (2015)
- [4] M. De Cian *et al.*, LHCb-PUB-2017-011 (2017)

5400

 $m_{J/\psi K^{\pm}} \left[\text{MeV}/c^2 \right]$

[5] S. Benson *et al.*, J. Phys.: Conf. Ser. 664 (2015) 082004