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LHCb [JINST 3 (2008) S08005]

One-arm spectrometer optimised for studies of beauty and charm decays at LHC

Good vertexing: measure B0 and B0
s oscillations, reject prompt background

Particle identification: flavour tagging, misID background
High-resolution tracking
Calorimetry: reconstruct neutrals (π0, γ) in the final state
Efficient trigger, including fully hadronic modes
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Particle ID in LHCb

Excellent Particle identification performance is vital for LHCb physics

B0
s → µ+µ−

]2c [MeV/−µ+µm
5000 5200 5400 5600 5800 6000

)2
C

an
di

da
te

s 
/ (

 5
0 

M
eV

/c

0

5

10

15

20

25

30

35 Total
−µ+µ → s

0B
−µ+µ → 0B

Combinatorial
−

h'+ h→ (s)
0B

µν+µ)−(K−π → (s)
0B

−µ+µ0(+)π → 0(+)B

µν−µ p→ b
0Λ

µν+µψ J/→ +
cB

LHCb

BDT > 0.5

[PRL 118, 191801 (2017)]

B0
s → K+K−

0

500

1000

1500

2000

2500 LHCb

5.4 5.5 5.6 5.7 5.8

)
2

C
an

di
da

te
s 

/ (
 1

0 
M

eV
/c

]2[GeV/cInvariant K+K- mass
5.35.25.15

[JHEP 10 (2013) 183]

B → K∗γ
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[Nucl. Phys. B867 (2013), 1]

Background rejection for rare decays
Classification of final states with the same topology
Reduction of bandwidth in the trigger
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PID subsystems in LHCb

Identify long-lived final state particles based on information from subdetectors:
Charged: π, K , p , e , µ

Neutral: π0, γ
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PID subsystems in LHCb

RICH1
RICH2

CALO
MUON

Identify long-lived final state particles based on information from subdetectors:
Charged: π, K , p , e , µ

Neutral: π0, γ
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PID and machine learning

Areas for machine learning in PID:
Identification of final state particles: supervised learning, multiclass
classification
Evaluation of PID efficiency from calibration data samples: unsupervised
learning, density estimation
Simulation of PID response: generative models.

See [next talk by Fedor Ratnikov]
“Fast calorimeter simulation in LHCb”

PID strategy and performance in Run2: see [talk by Carla Marin Benito]
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PID variables

Low-level PID information:
likelihoods obtained from info
of individual detectors

Rings in RICH detectors
Clusters in calorimeter
Hits in muon system

Higher-level variables (ProbNN):
ANN output combining the above (+auxiliary info from tracking etc.)
6 models for each of charged PID hypotheses + “ghost” (tracks not
representing real particles)
Trained on MC
Baseline approach: MLP implemented in TMVA, 1 hidden layer
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Advanced classification techniques for charged PID

Trying new classification techniques
XGBoost [arXiv:1603.02754]
CatBoost [arXiv:1706.09516]
Boosting to flatness [JINST 10 (2015) T03002]
Deep Neural Networks (keras library)

Improvements are possible with advanced classifiers, but careful choice of
training samples is needed (more sensitive to kinematic properties than baseline).
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PID classifier with flat efficiency

Typically, PID performance depends on track kinematics (p, η) and event
multiplicity
Systematics-limited measurements: having a classifier with efficiency
independent of kinematics/multiplicity is an advantage
Flat4d: classifier trained with flatness term in loss function

[JINST 10 (2015) T03002]

L = Lexp + αLFL, LFL =
∑
b

∫
|Fb(s)− F (s)|2ds
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Neutral PID

Radiative decays (e.g. B → K∗γ): sensitive to New Physics, energetic
photons in the final state
Large backgrounds from π0: high-momentum π0 do not form separated
clusters in ECAL.

Pattern recognition to separate γ from π0
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γ/π0 separation: baseline classifier

Input features based on 3× 3 “image” around a center of the cluster:
Shape of the cluster (width, tails, eccentricity, orientation)
Energies of the most and 2nd-most energetic cells
Hit multiplicity and shape in the preshower cells

Output: MLP with 2 hidden layers in TMVA

LHCb simulation

B0 → K∗γLHCb data

No π0 suppression

With π0 suppression
εsig = 98%, εbkg = 55%
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γ/π0 separation: new classifier

Input features: energy deposition in 5×5 ECAL and PS cells (“raw images”)
Training samples: B → Kπγ (signal) and B → Kππ0 (background)
Several classifiers tried:

ANNs with 1–2 hidden layers, different optimisers (Adamax, Adagrad, SGD)
BDTs (XGBoost, CatBoost, LightGBM)

BDT with XGBoost shows the best performance (AUC=0.95)
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PID resampling and correction

PID response is widely used in physics selections ⇒ need to reproduce it
precisely in simulation to evaluate selection efficiency, background
contamination.
PID performance is a complicated function of track kinematics and event
multiplicity ⇒ multivariate problem.
Two procedures developed at LHCb:

Resampling (PIDGen): Using the known 4D distribution of calibration
sample in PID variable, track kinematics (pT and η) and event multiplicity
(Ntracks), generate PID variable that looks like in data for any given track
kinematics and multiplicity.
Variable transformation (PIDCorr): Using the above 4D distributions for
data and MC, construct a function that transforms simulated PID response
such that it matches data.
This approach preserves correlations between different PID responses for
the same track (e.g. π and K probabilities).

[arXiv:1803.00824]
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PIDGen and PIDCorr: input variables

sPlot technique applied to calibration samples to statistically subtract
background [NIM A555 (2005) 356]
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sharp peaks)
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Pseudorapidity η
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PIDGen and PIDCorr: kernel density estimation

Four-dimensional kernel density estimation of calibration data performed using
Meerkat library [JINST 10 (2015) P02011] [HepForge]

Provides kernel-based correction to the approximated density
Efficient with multidimensional PDFs

Example: two-dimensional projections onto PID − log pT :
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PIDGen: validation of resampled variables

PIDGen: discard simulated PID response, resample from calibration density for
a given track pT , η and track multiplicity

PIDcorr = P−1
exp(ξ|pT , η,Ntracks)

Performance is validated on independent clean high-statistics data samples.
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PIDCorr: transformation of variables

PIDCorr: preserve correlations between different PID responses for the same
track. Transformation of simulated PID instead of complete resampling.

PIDcorr = P−1
exp ( PMC(PIDMC|pT , η,Ntracks) |pT , η,Ntracks)

Reproduce not only individual PID responses (ProbNNpi, ProbNNK, etc.),
but also their combinations

 simulated
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Summary

Particle identification at LHCb: a broad area to apply advanced machine
learning techniques
Several new approaches tested on Run1/Run2 data:

Multivariate classifiers for charged and neutral particle classification
Density estimation of calibration data: resampling and correction of MC PID
response

PID will be even more important after LHCb upgrade: software trigger
including PID information
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Backup
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Input variables for charged ANN classifiers
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PIDGen and PIDCorr approaches
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Meerkat approach to density estimation

Traditional kernel density: data points xi , kernel K (x)

PKDE(x) =
∑

i

K (x − xi )

Meerkat technique (relative kernel density estimation): [JINST 10 (2015) P02011]

Pcorr(x) =

N∑
i=1

K (x − xi )

(Pappr ⊗ K )(x)
× Pappr(x).

In other words, we represent the PDF as a product of approximation PDF and
kernel correction:

Pcorr(x) = f (x)Pappr(x)

Pappr(x) takes care of boundary effects and narrow structures.
In the practical implementation, use binning with multilinear interpolation:

Pinterp(x) =
Bin

[
N∑

i=1
K (x − xi )

]
Bin [(Pappr ⊗ K )(x)]

× Pappr(x).
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