

This work is partially supported by projects InterExcellence (LTT17018), Research infrastructure CERN (CERN-CZ, LM2015058) and OP RDE CERN Computing (CZ.02.1.01/0.0/0.0/1 6013/0001404) from EU funds and MEYS.

Exploitation of heterogeneous resources for ATLASComputing

Jiří Chudoba on behalf of the ATLAS collaboration

7. 7. 2018

Institute of Physics (FZU) of the Czech Academy of Sciences

- □ ATLAS general introduction (number of collisions, data rates and volumes, CPU requirements
- Usage of Grid as the main resource
 - geographic distribution of resources
 - heterogeneity of resources
- ATLAS Solutions for Grid
 - PanDA, JEDI, Rucio
- Newer types resources
- □ HPC
 - harvester, ARC cache, huge variations in number of cores
- Clouds
- □ ATLAS@Home

ATLAS

ATLAS experiment

Collaboration of more than **3000** authors from **182** institutes – grant data access to all

Large number of channels

+

High trigger rates

Huge data volumes

7. 7. 2018 chudoba@fzu.cz

Computing requirements

Still increasing:

ATLAS 2018 requirements

186 PB on disk289 PB on tape2520 kHS06 CPU years

ATLAS experiment

□ WLCG connects sites distributed across 5 continents

- "EGI" sites with various implementation of CEs and SEs
- OSG sites

WLCG Capacities in 2018			
cores	694000		
CPU capacity	8768 kHS06		
disk	382 PB		
tape	361 PB		

US capacities not included

Big effort to maximize resource usage and to automatize workflows

PanDA workload management system

- Used by ATLAS since2008, now adopted alsoby other projects
- Pilot based
- Factorized code

Rucio

- Distributed DataManagement System
- Developed for ATLAS,
 but now used and
 evaluated by other
 projects
- Handles 1 Billion ATLAS files, 365 PB

JEDI

- Job Execution and
 Definition Interface
- Dynamic job definition from tasks

Pilot

- Control and benchmark execution node
- Get jobs
- Monitor
- Stage-in, stage-out
- Cleanup

HPC

Differences between HPC and HTC

- Architecture
- Authentication
- Network access
- Access model

HPCs

Maximum: 964,939, Minimum: 254,282, Average: 398,753, Current: 331,573

Maximum: 485,921 , Minimum: 226,162 , Average: 327,650 , Current: 336,579

Schematic View

Harvester

- New component between Pilot and PanDA
- Running on site
- Stateless service plusDB

Event Service

- reduces lost CPU time
 in case of premature
 job termination
- important for backfilling HPC resources

- Successful business model
- ☐ Huge resources provided by commercial clouds
 - All LHC computing need covered by less than 1%
 - But significantly more expensive (apart from spot market)
 - Option for peak demands
- □ Private clouds enable better sharing with other groups

Clouds for ATLAS

- □ Fully integrated in the ATLAS infrastructure
 - "Standard" CE exposed by clouds
 - Details hidden by local setup
 - HTCondor, ARC
- Cloud Data storage used mostly for log files
 - Not (yet) suitable for big volume data storage

CPU HEPSPEC06 (Sum: 10,432,487,482)

ATLAS CPU consumption per resource,
January - May 2018

BOINC

- Open-source software for volunteer computing
- Uses the idle time of (personal)computers
- □ VirtualBox used for various platforms (Windows, Mac, Linux)
- □ Easy to use for laymen
- □ Also great for outreach

ATLAS@home

ATLAS@Home

- New use cases on clusters
 - clusters not supporting ATLAS VO
 - clusters supporting ATLAS VO

- Example of Beijing Tier2 site
 - Grid jobs walltime utilization 88%,
 cputime 66%
 - additional 23% of cpu utilization

Rank	Name	Recent average credit	Total credit	Country
1	Agile Boincers 🕥 💌	2,567,907	1,172,053,424	Switzerland
2	TRIUMF-LCG2 🕥 🕡 🔤	631,874	54,506,414	Canada
3	BEIJING-LCG2 💿 🐷	479,779	130,474,893	China
4	CharityEngine1	303,429	28,874,365	International
5	WLCG Performance-Test Cluster 🕥 💿 📼	251,080	83,857,386	Switzerland
6	LRZ-LMU 💿 🖭	246,891	10,176,386	Germany

- □ ATLAS Offline Computing successfully uses various resources with still increasing automation of workflows
- □ But it remains a huge distributed effort in terms of manpower for development and operations
- We greatly appreciate also non-pledged resources

Thank you for your attention!