HEPfit: The Analysis Toolkit

ICHEP 2018
Seoul, July 72018

Otto Eberhardt

IFIC, Universitat de València-CSIC

Vniversitat
(B) Valėncia

SM seems to be the correct description of most physics at LHC scales and below.

[1806.00242]

[1804.02716]

SM seems to be the correct description of most physics at LHC scales and below.

[1806.00242]

[1804.02716]

Yet, we know there is more to nature. Which way to take from this point?

HEPfit

$1 / 18$

Theory calculations get more precise and more complicated

We have a lot of experimental data to compare to, but the comparison is not always trivial and model dependent

The more results we combine with a certain theory, the better we can tell about the possible realisation of that theory.

Several codes on the market have one or more of the following disadvantages:

- Not public
- Slow (no fit possible) either due to sloppy implementation or external dependencies
- Not flexible: only one model or one set of constraints

Our idea:
Write an open-source code which can combine all experimental data and compare them to theory in a fit at best available precision, in as many models as possbile.

Otto Eberhardt
HEPfit
$4 / 18$

Our idea:
Write an open-source code which can combine all experimental data and compare them to theory in a fit at best available precision, in as many models as possbile.

General overview

Model

Parameters
Priors $\pi(\boldsymbol{\theta})$

\& Observables
Likelihoods $L(\boldsymbol{x} \mid \boldsymbol{\theta})$

Output:

General overview

Output: Parameter and observable posterior distributions

General overview

 Parameter correlations

General overview

Priors $\pi(\boldsymbol{\theta})$

Observables

Likelihoods $L(\boldsymbol{x} \mid \boldsymbol{\theta})$

Output: Parameter and observable posterior distributions Parameter correlations
Comparison of prior and posterior

General overview

Priors $\pi(\boldsymbol{\theta})$

Observables

Likelihoods $L(\boldsymbol{x} \mid \boldsymbol{\theta})$

Output: Parameter and observable posterior distributions Parameter correlations
Comparison of prior and posterior Global mode and normalisation, (D)IC values

Users and policies

Open-source project, but NO "HEPfit collaboration"

Shehu AbdusSalam	Otto Eberhardt	Ana Peñuelas
(U Tehran)	(FIC Valē̃eia)	(IFIC València)
Jorge dê Blas	Marco Fedele	Maurizio Pierini
(INFN Padóva)	(UParis-Sud)	(CERN)
Debtosh Chowdhury	Enrico Franco	Laura Reina
(EP Paris)	(INFN Rome)	(Florida State)
Marco Ciuchini	Giovann Grilli	Luca Silvestrini
(INFN Rome)	(U São Paulo)	(INFN Romé)
Giovanna Cottin	Satoshi Mishima	Mauro Valli
(NTU Taipei)	(KEK)	(INFN Rome)
António Coutinho	Ayan Paul	Norimi Yokozaki
(INFN Rome)	(HU Berlin)	(Tohoku U)

Dependencies and Usage

C++ compiler
GSL, boost - numerical solutions to integration, algebra, differential equations etc.
BAT - statistics
ROOT - graphical output of the results (histograms)
openMPI - only for parallelized fits

Once installed:
./analysis StandardModel.conf MonteCarlo.conf

Dependencies and Usage

C++ compiler
GSL, boost - numerical solutions to integration, algebra, differential equations etc.
BAT - statistics
ROOT - graphical output of the results (histograms)
openMPI - only for parallelized fits

Once installed:

> ./analysis StandardModel.conf MonteCarlo.conf

StandardModel.conf

```
StandardModel
# Model parameters: 
ModelParameter mH1 
CorrelatedGaussianParameters V1_lattice 2
ModelParameter a_0V 
ModelParameter a_1v [-2.03 0.92 0.90
1.00 0.86
0.86 1.00
<All the model parameters have to be listed here>
# Observables:
Observable Mw Mw M_{W} 80.3290 80.4064 MCMC weight 80.385 0.015 0.
Observable GammaW GammaW #Gamma_{W} 2.08569 2.09249 MCMC weight 2.085 0.042 0.
# Correlated observables:
CorrelatedGaussianObservables Zpole2 7
Observable Alepton Alepton A_{l} 0.143568 0.151850 MCMC weight 0.1513 0.0021 0.
llllon
Mlllom
Observable AFBbottom AFBbottom A_{FB}^{b} 0.100604 0.106484 MCMC weight 0.0992 0.0016 0.
Observable AFBcharm AFBcharm A_{FB}^{c} 0.071750 0.076305 MCMC weight 0.0707 0.0035 0.
Observable Abottom Abottom A_{b} 0.934320 0.935007 MCMC weight 0.923 0.020}0.90
Observable Acharm Acharm A_{c} 0.666374 0.670015 MCMC weight 0.670 0.027 0.
```



```
0.00
0.00
0.00
0.09 -0.08 0.0.04 0.0.06 0.0.02 
0.05 0.04 -0.0.06 0.0.01
# #
Observable2D MwvsGammaW Mw M_{W} 80.3290 80.4064 noMCMC noweight GammaW #Gamma_{W} 2.08569 2.09249
Observable2D Bd Bsbar mumu noMCMC noweight
Observable BR Bdmum\overline{u}
```



```
*
Observable2D S5_P5 noMCMC noweight 
BinnedObservable 
1. -1
# Including other configuration files
IncludeFile Flavour.conf
```


StandardModel.conf

```
StandardModel
lllll
CorrelatedGaussianParameters V1_lattice 2
ModelParameter a_OV 0.496 0.067 0.
ModelParameter a_1v 
1.00 0.86
0.86 1.00
<All the model parameters have to be listed here>
# Observables:
Observable Mw Mw M_{W} 80.3290 80.4064 MCMC weight 80.385 0.015 0.
Observable GammaW GammaW #Gamma_{W} 2.08569 2.09249 MCMC weight 2.085 0.042 0.
# Correlated observables:
CorrelatedGaussianObservables Zpole2 }
Observable Alepton Alepton A_{l} 0.143568 0.151850 MCMC weight 0.1513 0.0021 0.
lllllll
llllllll
Observable AFBbottom AFBbottom A-{FB}^{b} 0.100604 0.106484 MCMC weight 0.0992 0.0016 0. 0.
Observable AFBcharm AFBcharm A_{FB}^{c} 0.071750 0.076305 MCMC weight 0.0707 0.0035 0.
Observable Abottom Abottom A_{b) 0.934320 0.935007 MCMC weight 0.923 0.020 0.
Observable Acharm Acharm A_{c} 0.666374 0.670015 MCMC weight 0.670 0.027 0.
1.00
0.00
0.00
0.00
0.00
0.09
0.05
# Output correlations:
Observable2D MwvsGammaW Mw M_{W} 80.3290 80.4064 noMCMC noweight GammaW #Gamma_{W} 2.08569 2.09249
Observable2D Bd Bsbar mumu noMCMC noweight
lum,
\cdots
Observable2D S5_P5 noMCMC noweight
BinnedObservable S_5 S_5 ll. -1. 0. 0. 0. 4. 6.
BinnedObservable P-5 [-5 [-5 1. -1. 0. 0. 0. 4. 6.
#
# Including other configuration files
IncludeFile Flavour.conf
```

Model definition (currently 35)

StandardModel.conf

Parameter values

StandardModel.conf

Observable list

The release candidate 2 contains more than 1000 observables

HEPIIt nime	Models）	Comments
Mtrssar	Sm	
H\％	5 Sm	
${ }_{\text {comak }}^{\text {ciman }}$	Smm	
nigathadron	5 Sm	
tin2thetafft	5 Sm	
Ptuifor	${ }_{5}^{5 M}$	
${ }^{\text {Aleption }}$	${ }_{5}^{\text {SM }}$	
${ }_{\text {A }}^{\text {A chars }}$	Smm	
${ }_{\text {AFBlepton }}$	5 Sm	
afthars	${ }_{5} 5$	
${ }_{\text {afibbetaz }}$	${ }_{5}^{5 M}$	
${ }^{\text {R1／upton }}$	SM M	
$\xrightarrow{\text { Rehare }}$ Rhbotos	${ }_{5}^{5 M}$	
	डm	
VEFx	Sm	
vix	$5 m$	$x \in 7,8,13,14,10 Q$ ，mithoun x defauk s 8
${ }^{27 x}$	${ }_{5 M} 5$	$x \in 7,8,13,14,100$ ，mithoun x defauk is 8
Vax	${ }_{5}^{S M}$	$x \in 7,8,13,14,100.106$ ，mithout x defuelt is B
eghtrinx	5 m	$x \in B, 13,14.100$, milhont x defaut \＆ 8
ver + THx	Sm	x $x \in B, 13,14,100$ ，mithon x default s 8
ters	${ }_{5}^{\text {SM }}$	$x \in 7,8,13,14,100,196$ ，witrout x defualt is B
	${ }_{5}^{5 / 4}$	x \times 240，250，500， 1000
	${ }_{\text {Smam }}$	$\begin{aligned} & x \in 250,350.500,1000 \\ & x \in 500,1000 \end{aligned}$
Erigghatio	5 m	
Brthidatio	5 m	
Brizzatio	SM	
Brtlzgantio	SM	
${ }^{\text {srifegranatio }}$	${ }_{5}^{5 M}$	
$\underset{\substack{\text { Britumantio } \\ \text { Brthautufatio }}}{\text { ate }}$	SM SM	
	SMM	
Brthbkatio	Sm	
spailonx	Sm	$x=1.2,3,6$
tama	डाM	
Dusa	SM，THDM	
SJPsik	${ }_{5 M}^{5 m}$	
Bata＿＿Jpuiphi	5 Sm	
Epaizenk	${ }_{5}^{5 M}$	
nak	5 Sm	
V1／	${ }_{54}^{\text {Sm }}$	－u，c，tij $=$ d．s．b
${ }^{\text {alpas }}$	${ }_{5}^{5 M}$	
$\underset{\substack{\text { alpha＿2a } \\ \text { gema }}}{\text { ata }}$	（ ${ }_{\text {Smm }}$	
beta	$\operatorname{sim}_{\text {sm }}$	
butas	5 Sm	
2tatapgama	${ }_{\text {Sma }}^{5}$	
	${ }_{5}^{5 m}$	
CKH＿ran	5 Sm	
CKM－ata	${ }_{5}^{5 M}$	
3inthetal2 Sinthatal3	${ }_{5 M}^{S M}$	
\＃intheta 23	Sm	
ckeselta	$5 m$	
J．c8	$5 M$	
hte	${ }_{5}^{5 M}$	
$\underbrace{\substack{\text { kb } \\ \text { Vedorta }}}_{\text {kb }}$	SM	
Vedorita	${ }^{\text {SM }}$	
	SM M	
	${ }_{\text {SMM }}^{\text {Sm }}$	（ex
ER＿bama	डला	
tratar＿Bituri	5 Sm	
${ }^{\text {Aneru＿PId }}$	${ }_{5}^{\text {SM }}$	
Srumu． d $^{\text {d }}$	${ }_{5}^{\text {SM }}$	
	5 Sm	
	$\begin{aligned} & \mathrm{Sm} \\ & \mathrm{Sm} \end{aligned}$	
Sumazas	smm_{5}	
	SM	

Otto Eberhardt

，		
	${ }_{5}^{51 / 4}$	
	$5 M$ $5 M$	
Acp＿bevera	${ }_{5 M}$	
ak．bygera	$5 M$	
Acp－bzpena	$51 /$	
D S．jalatar	${ }_{5}^{51 / 2}$	itile，i
Pi．abiato	${ }_{5}^{5 M}$	$i \in 1.2,3$
Cumap＿Adgata	${ }_{5}^{5 M}$	
1．Fs，madkst＝s	${ }^{5 M}$	
日h＿BulKatru 4．＿⿴囗十⺝丶⿸厂⿱二⿺卜丿．	（ $\begin{gathered}51 / \\ 5 M\end{gathered}$	
${ }_{\text {aket＿bikatil }}$	${ }_{5}^{51}$	
Watti－sdazat11	${ }_{5 M}^{5 M}$	
	（ $\begin{gathered}5 M \\ 5 M \\ 5 M\end{gathered}$	
Acp＿hakrtau	514	
	${ }_{5}^{5 M}$	
	${ }_{5}^{5 M}$	
	SMM $5 M$	$i \in 1 p .2 p$
s．jadsatm	514	$i \in 3,4,5,7,8,8$
4，Lidsater	$5 m$	i 66.9
	${ }_{5}^{51 / 4}$	i $\mathrm{i}_{1,2,3,4 p, 5 p, 6 p, 8 p}$
Cumenf blatea	${ }^{5 M}$	
	${ }_{5}^{5 M}$	
F．Lt＿Edketm	514	
Sit＿ Bdzaten	${ }_{5}^{5 M}$	i 6 3．4，5，7，8， 9
P－rehationt	${ }_{5}^{5 M}$	
，mititica＿exact	${ }_{5}^{5 M}$	
Vx，Bdistrau	${ }_{5 M}^{5 M}$	$x \in 0, p, m$
Tx，daktun	$51 /$ $5 M$	$x \in 0, p, m$
	${ }_{5}^{5 M}$	i $\in 1,2,3$
	$5 M$	$i_{i \in 1,2,3}$
Amgtilde＿iduxateu	SM	i $\in 1,2,3$
Legtilide ilinuxtu	${ }_{5}^{51 /}$	$i \in 1,2,3$
	${ }_{5}^{51 /}$	i $i \in 1,2,3$
	${ }_{5}^{5 M}$	${ }^{i} \in 1,2,3$
Sab＿x＿EAK＿tas	${ }_{5}^{5 M}$	$x \in 0, p, m$
	${ }^{5 M}$	$x \in 0, p, m$
	${ }_{5}^{5 M}$	$x \in 0, p, m$
	$5 M$	$x \in 0, p, m$
	${ }_{54}^{51 / 2}$	
9．L．Apkitau	（ $\begin{aligned} & \text { SM } \\ & 5 M\end{aligned}$	
	डाय	
C＿Kxteren	514	
	（ 5 SM	
NCG＿BKatguman	${ }_{5}^{5 M M}$	
Natcis	${ }_{5}^{5 M}$	$\sum_{i \in 1,2}^{\substack{\text { a } \\ x \in R}}$
sabat－s	${ }_{5}^{514}$	$x \in L, R$
1 lva ， s	${ }_{54}^{51 /}$	
	514	
Erackerguas	Stir	
	${ }_{51}^{51 / 2}$	${ }^{1 \in 1,2,3,4 p, 5 p, 6 p, 8 p}$
C．Fs，miphise	5 m	
ak＿－ıphasu	$5 M$	
	${ }_{5}^{5 M}$	
	SM SM	
ABE－日官如11		
Act－birphisu	${ }_{5 M}$	
${ }^{\text {Pacp＿baptine }}$	${ }_{5}^{51 M}$	
	${ }_{5}^{51 / 4}$	
S．	${ }_{5}^{51 / 2}$	$i \in 1 p, 2 p$
A jarchima	$5 M$	$i \in 6,9$
	डात	
${ }_{\text {c }}^{\text {c．aphgeren }}$	${ }^{5 M}$	
5．apprgaras	${ }_{5}^{51 / 4}$	
Sç＿kaphama	$5 M$	
sh．ake	$5 M$	
20．Em21	54	
btemm	STM，THDM	

HEPfit

硣		
	$3 \operatorname{sisy}$ susy susy susy susy susy susy susy susy susy	
		$\left.\right\|_{\substack{y=12,2,12 \\ i=1,2,14}} ^{i=1,2,3}$

$9 / 18$

Observable list

The release candidate 2 contains more than 1000 observables

Otto Eberhardt

HEPfit

$9 / 18$

Standard Model

Full flexibility in the Standard Model:

- 3 gauge couplings: $g_{1}, g_{2}, g_{3}\left(\operatorname{or} \Delta \alpha_{\text {had }}^{(5)}, M_{Z}, \alpha_{s}\right)$
- m_{h} and λ (or v or G_{F})
- 9 fermion masses: $m_{u}, m_{d}, m_{s}, m_{c}, m_{b}, m_{t}, m_{e}, m_{\mu}, m_{\tau}$
- $\lambda, A, \bar{\rho}, \bar{\eta}$ (or $\theta_{12}, \theta_{13}, \theta_{23}$, and δ)

18 (real) parameters

Otto Eberhardt
HEPfit
$10 / 18$

Standard Model - observables

Many flavour and electroweak observables

[Ciuchini et al. '15]

[de Blas et al. '16]

Otto Eberhardt
HEPfit
$11 / 18$

Generic SM extensions in HEPfit

Modified $Z b \bar{b}$ couplings
($\delta g_{R, L}^{b}$)
EW pseudo-observables
(S,T,U/ $\delta \varepsilon_{i}, \delta \varepsilon_{b}$)
Modified Higgs couplings
($\kappa_{u, d, \ell, W, z}$)
SM effective theory
(59 c_{i})
Electroweak chiral Lagrangian $\left(9 c_{i}\right)$

Generic SM extensions in HEPfit

Modified $Z b \bar{b}$ couplings $\left(\delta g_{R, L}^{b}\right)$

EW pseudo-observables
$\left(S, T, U / \delta \varepsilon_{i}, \delta \varepsilon_{b}\right)$
Modified Higgs couplings
($\kappa_{u, d, \ell, W, z}$)
SM effective theory
(59 c_{i})

Electroweak chiral Lagrangian [de Blas et al. '16] (9 c_{i})

Generic SM extensions in HEPfit

Modified $Z b \bar{b}$ couplings
$\left(\delta g_{R, L}^{b}\right)$
EW pseudo-observables
$\left(S, T, U / \delta \varepsilon_{i}, \delta \varepsilon_{b}\right)$
Modified Higgs couplings
($\kappa_{u, d, \ell, W, z}$)
SM effective theory

(59 c_{i})
Electroweak chiral Lagrangian
[de Blas et al. '16]
(9 c_{i})

Generic SM extensions in HEPfit

Modified $Z b \bar{b}$ couplings $\left(\delta g_{R, L}^{b}\right)$

EW pseudo-observables
$\left(S, T, U / \delta \varepsilon_{i}, \delta \varepsilon_{b}\right)$
Modified Higgs couplings
($\kappa_{u, d, \ell, W, z)}$
SM effective theory
(59 c_{i})
Electroweak chiral Lagrangian

[de Blas et al. '16] (9 c_{i})

Generic SM extensions in HEPfit

Modified $Z b \bar{b}$ couplings
$\left(\delta g_{R, L}^{b}\right)$
EW pseudo-observables
$\left(S, T, U / \delta \varepsilon_{i}, \delta \varepsilon_{b}\right)$
Modified Higgs couplings
($\kappa_{u, d, \ell, W, z}$)
SM effective theory
(59 c_{i})
Electroweak chiral Lagrangian (9 c_{i})

[de Blas et al. '16]
Dedicated ICHEP talk:
Constraints on the SMEFT

Generic SM extensions in HEPfit

Modified $Z b \bar{b}$ couplings
$\left(\delta g_{R, L}^{b}\right)$
EW pseudo-observables
$\left(S, T, U / \delta \varepsilon_{i}, \delta \varepsilon_{b}\right)$
Modified Higgs couplings
($\kappa_{u, d, \ell, W, z}$)
SM effective theory
(59 c_{i})

Electroweak chiral Lagrangian $\left(9 c_{i}\right)$

New physics models in HEPfit

2HDM with(out) Z_{2} symmetry
(7 / 66 parameters)
Georgi-Machacek model
(8 parameters)
Manohar-Wise model (14 parameters)

MSSM with complex couplings (108 parameters)

Left-Right symmetric model (13 parameters)

New physics models in HEPfit

2HDM with(out) Z_{2} symmetry (7 / 66 parameters)

Georgi-Machacek model
(8 parameters)
Manohar-Wise model (14 parameters)

MSSM with complex couplings (108 parameters)

Left-Right symmetric model (13 parameters)

[Chowdhury, OE '17]
Dedicated ICHEP talk:
Current status of 2HDM's

New physics models in HEPfit

2HDM with(out) Z_{2} symmetry (7 / 66 parameters)

Georgi-Machacek model (8 parameters)

Manohar-Wise model (14 parameters)

MSSM with complex couplings (108 parameters)

Left-Right symmetric model (13 parameters)

$\gamma \gamma$ decays	$\square Z$ decays
$b b$ decays	\square
$\square \tau$ decays	
$\tau \tau$ decays	$Z \gamma$ decays
$W W$ decays	\square
All signal strength	

[Chiang, Cottin, OE '18]

New physics models in HEPfit

2HDM with(out) Z_{2} symmetry
(7 / 66 parameters)
Georgi-Machacek model
(8 parameters)
Manohar-Wise model
(14 parameters)
MSSM with complex couplings (108 parameters)

Left-Right symmetric model (13 parameters)

[Cheng, OE, Murphy, '18]

2HDM with (out) Z_{2} symmetry (7 / 66 parameters)

Georgi-Machacek model (8 parameters)

Manohar-Wise model (14 parameters)

MSSM with complex couplings (108 parameters)

Left-Right symmetric model
(13 parameters)

[OE, Paul, '18]

Implementation of your own model

User-defined models and observables can easily be defined as external modules:

Library and Monte Carlo modes

Until here only a collection of formulae, which can be used as a library.

No analytical treatment, but (very) fast evaluation as compared to e.g. Mathematica

Parallelized Markov Chain Monte Carlo simulations with the Bayesian Analysis Toolkit (BAT).

Or use your own statistical set-up.

Example - Unitarity triangle in the SM

Unitarity triangle fits with run time of at least a few days

[CKMfitter '15]

[UTfit '14]

Example - Unitarity triangle in the SM

Unitarity triangle fit with HEPfit is possible on a laptop: about 4 hours with two cores

UTfit collaboration decided to use HEPfit in the future!

Summary

HEPfit http://hepfit.roma1.infn.it

Calculates and fits Higgs, EW and flavour observables in

- Standard Model
- various effective theories
- scalar SM extensions (2HDM, Georgi-Machacek, Manohar-Wise)
- MSSM, Left-Right symmetry

Publications on $B \rightarrow K^{*} \ell^{+} \ell^{-}$, EWPO, SMEFT, ew $\chi \mathcal{L}, 2 H D M$.

